Análise Geométrica & Geometria Diferencial

Desde maio do ano de 2021, os Seminários de Análise Geométrica & Geometria Diferencial do PPGMAT/UFAL passaram a integrar os Seminários de Geometria do Nordeste Webinar (GENE) ofertados em associação entre universidades e institutos federais da Região Nordeste.

Acesso às informações sobre as palestras: Aqui
Cadastro de acesso aos encontros: Aqui
Mais informações: Aqui



Canal do YouTube: acesse aqui



Título: Hipersuperfícies Totalmente Umbílicas de MxR

Palestrante: Ronaldo Freire de Lima (UFRN)
Link: https://meet.google.com/xsy-pcrz-pqj
Data: 18 de Novembro de 2021 (quinta-feira)
Horário: 10h00

Mais informações: https://sites.google.com/mat.ufc.br/gdag

Resumo:
Nesta palestra, apresentaremos os resultados obtidos num recente trabalho em parceria com João P. dos Santos. Nele, caracterizamos as hipersuperfícies totalmente umbílicas de produtos riemannianos MxR, bem como classificamos as superfícies totalmente umbílicas de H^n x R e S^n x R.
Veremos, também, que resultados análogos são válidos nos correspondentes produtos "warped''.



Título: Four-dimensional gradient shrinking Ricci solitons

Palestrante: Ernani Ribeiro Jr (UFC)
Data: 04 de Novembro de 2021 (quinta-feira)
Horário: 10h00
Resumo:
In this talk, we will discuss 4-dimensional complete (not necessarily compact) gradient shrinking Ricci solitons. We will show that a 4-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part of the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton $R^4,$ or $S^3\times R$, or $S^2\times R^2.$ In addition, we will present some curvature estimates for 4-dimensional complete gradient Ricci solitons. Some open problems will also be discussed. This is a joint work with Huai-Dong Cao (Lehigh University) and Detang Zhou (UFF).



Título: Complete translating graphs in R^3

Palestrante: Eddygledson Gama (UFERSA)
Link: https://meet.google.com/kvd-bvjt-zaf
Data: 26 de agosto de 2021 (quinta-feira)
Horário: 10h00
Mais informações: https://sites.google.com/mat.ufc.br/gdag

Resumo:
The main goal of this talk is to give a study about the translating graphs for the mean curvature flow in R^3.
In order to do so, we divide our lecture into two topics: structure of the graph and classification.

About the structure part, we introduce a new way to decompose a complete translating graph in a slab. As a consequence of this way of viewing the graphs, we show that the entropy of a complete graph is equal to the number of planes that the graph develops in the “upper” infinity.

On the other hand, in the classification part, we classify graphs under natural assumptions which came from the structure part. More precisely, we classify graphs with one of the following assumptions: a small number of wings, low entropy, low width, or lying in a half-slab.



Título: On r-Trapped Submanifolds Immersed in Lorentzian Spacetimes

Palestrante: Francisco Calvi (URCA)
Data: 19 de agosto de 2021 (quinta-feira)
Horário: 10h00 

Resumo: The behavior of spacelike submanifolds immersed in Lorentzian manifolds is an important object of study which has aroused a lot of interest in recent years, from both the physical and mathematical points of view. Into this branch, the trapped submanifolds appear as an important particular case. The concept of trapped submanifolds, originally formulated by Penrose, is related to the causal orientation of the mean curvature vector field of the submanifold, that is, a spacelike submanifold of a spacetime is said to be trapped if its mean curvature vector field is timelike. Recently, de Lima, dos Santos and Veásquez (2016) obtained rigidity for trapped submanifolds in Lorentzian spaces forms, they condidered assumptions such as parallel mean curvature and pseudo-umbilicity. Later, Alías, Cánovas and Colares (2017), considered codimension two trapped submanifolds immersed in generalized Robertson-Walker spacetimes and obtained results of nonexistence and rigidity.

In this seminar, will we introduce the notion of r-trapped submanifolds immersed Lorentzian spacetimes as generalization of the trapped submanfolds introduced by Penrose. Within this scope, we will present rigidity and nonexistence results for r-trapped in some configurations of generalized Robertson Walker (GRW) spacetimes and, lastly, we provide examples of r-trapped submanifolds, some of them are also simultaneously trapped, but we provided examples proving that the notion of r-trapped submanifolds are different accordingly to the natural number r.

 



Título: Superfícies capilares: estabilidade, índice e estimativas de curvatura

Palestrante: Artur Saturnino (University of Pennsylvania)
Local: meet.google.com/tji-kbtq-rqg
Data: Quinta-Feira, 12 de agosto de 2021
Horário: 10h00
Mais informações: https://sites.google.com/mat.ufc.br/gdag

Resumo: Superfícies capilares são pontos críticos para variações que preservam volume de um funcional que modela a energia na superfície de um líquido incompressível em um recipiente, ignorando a gravidade. Os índices fraco e forte de uma superfície capilar medem o quão distante essa superfície está de minimizar energia até o segundo grau de aproximação. Nessa palestra investigamos a conexão entre o índice e a geometria e topologia de superfícies capilares. Apresentaremos estimativas para o índice de superfícies capilares compactas em variedades de dimensão 3, também estudamos superfícies capilares não compactas com índice finito e mostramos que, em condições apropriadas de curvatura, tais superfícies são conformes a superficies de Riemann com bordo compactas com um número finito de furos. Usando esse resultado, nós provamos que uma superfície capilar estável imersa em uma meio-espaço de $\mathbb{R}^3$ que é mínima ou tem ângulo de contato menor ou igual a $\pi/2$ deve ser um meio-plano. Usando esse resultado de unicidade nós obtemos estimativas de curvatura para superfícies capilares estáveis imersas em uma variedade de dimensão 3 com geometria limitada.
Essa palestra é baseada em trabalho conjunto com Han Hong.




Título
Gráficos Solitons do fluxo da curvatura média

Palestrante: Renivaldo Sena (IFCE)
Data: Quinta-Feira, 29 de julho de 2021
Horário: 10h00
Resumo: Discutiremos a existência e não existência de gráficos solitons do fluxo da curvatura média com bordo no infinito em variedades com estrutura de produto warped MxR, com ênfase no caso em quem o espaço ambiente é o espaço hiperbólico. Esta palestra é parte de um trabalho em conjunto com o Professor Dr. Luciano Mari (Università degli Studi di Torino).




Título: Obstruções a curvatura escalar positiva em variedades cônicas

Palestrante: Levi Lopes de Lima (UFC)

Local: https://meet.google.com/qhr-posk-tfs
Data: Quinta-feira, 15 de julho de 2021
Horário: 10h00
Mais informações: https://sites.google.com/mat.ufc.br/gdag

Resumo:
Versões apropriadas da fórmula do índice de Atiyah-Singer para operadores de Dirac serão usadas para estender a variedades spin com singularidades cônicas isoladas as clássicas obstruções à existência de métricas com curvatura escalar positiva. No caso em que a variedade subjacente possui fronteira disjunta da região cônica, variações do método geram obstruções a métricas que, adicionalmente, tornam esta fronteira convexa em média (baseado em arXiv:2104.13882).



Título: Sharp systolic inequalities for 3-manifolds with boundary

Palestrante: Eduardo Longa (USP)

Data: Quinta-Feira, 08 de junho de 2021 
Horário: 10h00

Resumo:
Systolic Geometry dates back to the late 1940s, with the work of Loewner and his doctoral student Pu. This branch of differential geometry received more attention after the seminal work of Gromov, where he proved his famous systolic inequality and introduced many important concepts. In this talk I will recall the notion of systole and present some sharp systolic inequalities for free boundary surfaces in 3-manifolds.



Seminário Conjunto: Geometria do Nordeste Webinar (GENE)  & Seminário São Paulo de Geometria Diferencial (AmSul)

Título: Morse theory for the area functional and the min-max widths
Palestrante: Rafael Montezuma
Data: Sexta-Feira, 02 de julho de 2021
Horário: 14h00 

Resumo:
In this talk we discuss some central results in the min-max theory for the area functional, including Morse inequalities in codimension one assuming the ambient dimension between 3 and 7. In addition, we will present methods to compare the natural min-max invariants to other geometric quantities, such as volume and curvature. These min-max invariants are special critical values of the area functional, defined through the topology of the space of surfaces. This talk is based on joint works with Lucas Ambrozio (IMPA), Fernando Codá Marques (Princeton University) and André Neves (The University of Chicago).



Título: L^p Hessian and gradient estimates for solutions of the Poisson equation on complete manifolds

Palestrante: Stefano Pigola (Università degli Studi di Milano-Bicocca)
Data: Quinta-feira, 27 de maio de 2021
Hora: 10h00

Resumo: We will give a survey of recent results and techniques, based on different geometric assumptions on the underlying manifold M, to prove the validity and the failure of global inequalities of Calderón-Zygmund type.



Título: A two-piece problem for free boundary minimal surfaces in the 3-dimensional ball

Palestrante: Ana Menezes (Princeton University)
Data: Quinta-feira, 20 de maio de 2021
Hora: 15h00

Resumo: In this talk we will prove that every plane passing through the origin divides an embedded compact free boundary minimal surface of the euclidean 3-ball in exactly two connected surfaces. This result gives evidence to a conjecture by Fraser and Li. This is a joint work with Vanderson Lima from UFRGS.



Título: On complete Schouten solitons

Palestrante: Valter Borges (Universidade Federal do Pará)
Data: Quinta-feira, 13 de maio de 2021
Hora: 10h00

Resumo: In this talk, we investigate the geometry of complete gradient Schouten solitons. These are the self-similar solutions of the Schouten flow, a geometric evolution equation for Riemannian metrics introduced in Bourguignon’s classical paper. These metrics were first investigated by Catino and Mazzieri in 2016, where it was shown that compact Schouten solitons are Einstein. Another classification found in this paper is that of the complete steady Schouten solitons, where it was proved that these metrics are Ricci flat. The results of this talk concern shrinking and expanding complete noncompact Schouten solitons. We present optimal inequalities between the potential function and the norm of its gradient and show that the scalar curvature of such metrics must be bounded.



Título: On the geometry and topology of initial data sets in General Relativity

Palestrante: Gregory J. Galloway (University of Miami)
Local: meet.google.com/ujd-ndsi-hvw
Data: Quinta-feira, 18 de março de 2021
Hora: 15h00

Resumo:

A theme of long standing interest (to the speaker!) concerns the relationship between the topology of spacetime and the occurrence of singularities (causal geodesic incompleteness). Many results concerning this center around the notion of topological censorship, which has to do with the idea that the region outside of all black holes (and white holes) should be topologically simple. In this talk we present results which provide support for topological censorship at the pure initial data level, thereby circumventing difficult issues of global evolution. The proofs rely on the theory of marginally outer trapped surfaces, which have played an important role in the theory of black holes, and which may be viewed as spacetime analogues of minimal surfaces in Riemannian geometry. The talk will begin with a brief overview of general relativity and topological censorship. The talk is based primarily on joint work with various collaborators: Lars Andersson, Mattias Dahl, Michael Eichmair and Dan Pollack.



Título: Initial data rigidity results

Palestrante: Abraão Mendes do Rêgo
Local: 
meet.google.com/nkp-jdwx-cwr
Data:
Sexta-feira, 19 de fevereiro de 2021
Hora:
14h00

Resumo:

In this lecture we aim to present some rigidity results for initial data sets that are motivated by the spacetime positive mass theorem. A key step is to show that certain marginally outer trapped surfaces (MOTS) are weakly outermost. As a special case, our results include a rigidity result for Riemannian manifolds with a lower bound on their scalar curvature. 



Título: Existência de hipersuperfícies mínimas de fronteira livre em domínios quádricos 

PalestranteRodrigo Fernandes de Moura Melo (UFAL)
Local: 
Via Conferência Web em: http://meet.google.com/yfp-afeh-rwz 
Data:
Sexta-feira, 12 de fevereiro de 2021
Hora: 
14h00



Título: Estimativa para o volume de ciclos em variedades hiperbólicas com bordo

Palestrante: Moreno Bonutti (UFAL)
Local: http://meet.google.com/wsj-qsrx-rcs
Data: Sexta-feira, 29 de janeiro de 2021
Hora: 14h00

Resumo



Título: O índice de Morse e o primeiro número de Betti de subvariedades mínimas

Palestrante: Diego Alves Adauto (UERN/UFAL)
Local: Via Conferência Web em: http://meet.google.com/yfp-afeh-rwz 
Data: Quinta-feira, 14 de janeiro de 2021
Hora: 10h30