Padrão de Resposta - Mestrado 2026.1

1. (a) Prova. Seja (x_n) uma sequência de Cauchy. Então existe $M \in \mathbb{N}$ tal que para todo $m, n \geq M$ temos $|x_m - x_n| < 1$. Fixe n = M. Para todo $k \geq M$,

$$|x_k| \le |x_k - x_M| + |x_M| < 1 + |x_M|.$$

Os finitos termos x_1, \ldots, x_{M-1} também têm máximo absoluto finito; seja

$$R := \max\{|x_1|, \dots, |x_{M-1}|, 1 + |x_M|\}.$$

Logo $|x_n| \leq R$ para todo n, isto é, (x_n) é limitada.

- (b) Prova.
 - Se (x_n) converge para $L \in \mathbb{R}$ então é Cauchy: dado $\varepsilon > 0$, escolha N com $|x_n L| < \varepsilon/2$ para todo $n \geq N$. Então para $m, n \geq N$,

$$|x_m - x_n| \le |x_m - L| + |x_n - L| < \varepsilon.$$

• Recíproca: seja (x_n) Cauchy. Pelo item anterior é limitada. Pelo Teorema de Bolzano-Weierstrass, toda sequência limitada tem uma subsequência convergente; seja $x_{n_k} \to L$. Mostramos que $x_n \to L$. Dado $\varepsilon > 0$, escolha K tal que para $k \ge K$ temos $|x_{n_k} - L| < \varepsilon/2$. Como (x_n) é Cauchy existe N com $|x_m - x_n| < \varepsilon/2$ sempre que $m, n \ge N$. Escolha k com $n_k \ge N$ e $k \ge K$. Então para todo $n \ge N$,

$$|x_n - L| \le |x_n - x_{nk}| + |x_{nk} - L| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Assim $x_n \to L$.

- 2. (a) Prova. (i) Suponha que $K \subset \mathbb{R}$ é compacto, ou seja, fechado e limitado. Como (x_n) está em um conjunto limitado, por Bolzano-Weierstrass existe uma subsequência convergente; o limite pertence a K pois K é fechado. Logo toda sequência em K tem subsequência convergente em K.
 - (ii) Suponha que toda sequência em K tem subsequência convergente com limite em K. Então K é fechado, caso contrário deveria existir uma sequência $(x_n) \subset K$ tal que $\lim x_n = a \notin K$. Logo, nenhuma subsequência dessa sequência poderia convergir para ponto de K, pois toda subsequência de uma sequência convergente tem o mesmo limite. O que é uma contradição.

Além disso, K deve ser limitado, pois se não fosse, encontraríamos uma sequência tal que $|x_{n+1}| > |x_n| + 1$ para todo n. Tal sequência não admite subsequência convergente. O que também é uma contradição.

(b) Definição de função contínua.

Dizer que $f: X \to \mathbb{R}$ é contínua em $x_0 \in X$ significa: para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $|x - x_0| < \delta$ implica $|f(x) - f(x_0)| < \varepsilon$. Diz-se f contínua se for contínua em todo $x_0 \in X$.

Universidade Federal de Alagoas Instituto de Matemática

(c) Prova. Seja $f: X \to \mathbb{R}$ contínua e $K \subset X$ compacto. Usando a caracterização sequencial: tome qualquer sequência $(y_n) \subset f(K)$. Para cada n escolha $x_n \in K$ com $f(x_n) = y_n$ (pois y_n é imagem de algo em K). Pela compactidade sequencial de K existe uma subsequência x_{n_k} convergente para $x \in K$. Pela continuidade de $f, y_{n_k} = f(x_{n_k}) \to f(x) \in f(K)$. Assim toda sequência em f(K) tem subsequência convergente em f(K), isto é, f(K) é sequencialmente compacto e, em \mathbb{R} , compacto. \square

3. (a) **Definição**.

 $f: X \to \mathbb{R}$ é uniformemente contínua se: para todo $\varepsilon > 0$ existe $\delta > 0$ tal que para quaisquer $x, y \in X$, se $|x - y| < \delta$ então $|f(x) - f(y)| < \varepsilon$. Note que δ não depende dos pontos do domínio, apenas de ε .

- (b) Prova. Primeiro suponha f uniformemente contínua e sejam $(x_n), (y_n) \subset X$ tais que $\lim(x_n y_n) = 0$. Dado $\varepsilon > 0$ escolha $\delta > 0$ correspondente; existe N com $|x_n y_n| < \delta$ para $n \geq N$, logo $|f(x_n) f(y_n)| < \varepsilon$ para $n \geq N$. Assim $\lim(f(x_n) f(y_n)) = 0$. Recíproca: Se f não for uniformemente contínua existe $\varepsilon_0 > 0$ tal que para todo $k \in \mathbb{N}$ existe $x_k, y_k \in X$ com $|x_k y_k| < 1/k$ e $|f(x_k) f(y_k)| \geq \varepsilon_0$. As sequências $(x_k), (y_k)$ satisfazem $|x_k y_k| \to 0$ mas $|f(x_k) f(y_k)| \not\to 0$, contradizendo a hipótese. Logo f deve ser uniformemente contínua.
- (c) Prova. Suponha $f: K \to \mathbb{R}$ contínua com K compacto. Por contradição, se f não for uniformemente contínua existe $\varepsilon_0 > 0$ e sequências $(x_n), (y_n) \subset K$ tais que $|x_n y_n| \to 0$ e $|f(x_n) f(y_n)| \ge \varepsilon_0$ para todo n. Como K é compacto, da sequência (x_n) extrai-se uma subsequência (x_{n_k}) que converge para algum $x \in K$. Como $|x_{n_k} y_{n_k}| \to 0$, segue $y_{n_k} \to x$ também. Pela continuidade de f temos $f(x_{n_k}) \to f(x)$ e $f(y_{n_k}) \to f(x)$, o que implica $|f(x_{n_k}) f(y_{n_k})| \to 0$, contradizendo $|f(x_{n_k}) f(y_{n_k})| \ge \varepsilon_0$. Portanto f é uniformemente contínua.

4. a) Teorema do Valor Intermediário (enunciado).

Se $f:[a,b] \to \mathbb{R}$ é contínua e L é um valor entre f(a) e f(b) (isto é, ou $f(a) \le L \le f(b)$ ou $f(b) \le L \le f(a)$), então existe $c \in [a,b]$ tal que f(c) = L.

b) *Prova*. Seja

$$p(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_0$$

com n ímpar. Considere os limites:

$$\lim_{x \to +\infty} p(x) = +\infty, \qquad \lim_{x \to -\infty} p(x) = -\infty$$

pois o termo dominante x^n domina e muda de sinal quando x passa de $+\infty$ para $-\infty$ porque n é ímpar. Como p é contínuo, pelos valores arbitrariamente grandes de sinais opostos, existe a e b com p(a) > 0 e p(b) < 0. Pelo Teorema do Valor Intermediário, existe c entre a e b com p(c) = 0.

Universidade Federal de Alagoas Instituto de Matemática

5. Prova. Seja $f:[a,b]\to\mathbb{R}$ contínua e suponha $\int_a^b f(x)^2\,dx=0$. Como f^2 é contínua e não negativa, a integral zero implica que $f^2(x)=0$ para todo $x\in[a,b]$. De fato, se existisse x_0 com $f(x_0)\neq 0$ então, pela continuidade, haveria um intervalo I contendo x_0 em que $f^2(x)\geq c>0$ para todo $x\in I$. Daí $\int_a^b f^2dx\geq \int_I f^2dx\geq c\cdot |I|>0$, onde |I| denota o comprimento de I. O que é uma contradição. Assim f(x)=0 para todo $x\in[a,b]$.