Padrão de Resposta - Doutorado 2026.1

1. a) Calculamos a matriz jacobiana de F:

$$F'(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}.$$

Como o determinante Jacobiano é e^{2x} , a qual é não-nulo para cada $(x,y) \in \mathbb{R}^2$. Então segue do Teorema da função inversa que F é um difeomorfismo local

- b) F não é um difeomorfismo global. Por exemplo, ela não é bijetiva devido ao fato que $F(0,0)=F(0,2\pi)$.
- 2. Seja em \mathbb{R}^m a norma euclidiana $|x| = \sqrt{x \cdot x}$. Defina

$$f: \mathbb{R}^m \setminus \{0\} \to \mathbb{R}, \qquad f(x) = |x|^{2026}$$

Vamos calcular a diferencial df(x) e, em particular, $df(x) \cdot v$ para $v \in \mathbb{R}^m$.

Escrevemos f como composição de funções mais simples. Note que

$$f(x) = (|x|^2)^{1013},$$

pois 2026/2 = 1013. Defina $h: \mathbb{R}^m \to [0, \infty)$ por $h(x) = |x|^2 = \langle x, x \rangle$ e $g: [0, \infty) \to \mathbb{R}$ por $g(s) = s^{1013}$. Então $f = g \circ h$.

Calculamos as derivadas:

$$g'(s) = 1013 s^{1012},$$

$$Dh(x) \cdot v = 2\langle x, v \rangle.$$

Pela regra da cadeia para diferenciais, para todo $x \neq 0$ e todo $v \in \mathbb{R}^m$,

$$df(x) \cdot v = g'(h(x)) (Dh(x) \cdot v) = 1013(|x|^2)^{1012} \cdot 2\langle x, v \rangle.$$

Simplificando os fatores e utilizando $(|x|^2)^{1012} = |x|^{2024}$, obtemos

$$\int df(x) \cdot v = 2026 |x|^{2024} \langle x \cdot v \rangle.$$

3. a) A derivada directional na origem é:

$$\frac{\partial f}{\partial v}(0) = \lim_{t \to 0} \frac{f(0+tv) - f(0)}{t} = \lim_{t \to 0} \frac{f(tv)}{t}.$$

Pela hipótese, f(tv) = tf(v), temos que

$$\frac{\partial f}{\partial v}(0) = f(v).$$

b) Note que, fazendo v=(a,b) conclui-se que f(v) não é linear em v. Por outro lado $\frac{\partial f}{\partial v}(0)$ é linear em v. Portanto, f não pode ser diferenciável.

Universidade Federal de Alagoas Instituto de Matemática

4. a) Suponha que $f:K\to\mathbb{R}$ não é Lipschitz. Por definição, isto significa que não existe constante L>0 tal que

$$|f(x) - f(y)| \le L|x - y|$$
 para todo $x, y \in K$.

Portanto, para cada n existe pelo menos um par $(x_n, y_n) \in K \times K$ tal que

$$|f(x_n) - f(y_n)| > n |x_n - y_n|.$$

Tomando $k_n := n$ obtemos uma sequência crescente de números reais com $k_n \to \infty$ e duas sequências $(x_n), (y_n) \subset K$ que satisfazem, para todo n,

$$|f(x_n) - f(y_n)| > k_n |x_n - y_n|.$$

Note que $x_n \neq y_n$ para todo n, pois, caso contrário o membro esquerdo seria zero, contradizendo a desigualdade acima.

- b) Se f não é Lipschitz, existe uma sequencia crescente $(k_n)_n$ de números reais tais que $k_n \to \infty$ e sequências $(x_n), (y_n) \subset K$ tais que $|f(x_n) f(y_n)| > k_n |x_n y_n|$ para todo n. Pela compacidade de K podemos supor que $x_n \to a$ e $y_n \to b$, para o mesmo conjuntos de índices, de modo que $|f(x_n) f(y_n)| > k_n |x_n y_n|$ para todo n.
 - I. Se a=b, como f é localmente Lipschitz, deve existir M>0 e n_0 tal que $k_n<\frac{|f(x_n)-f(y_n)|}{|x_n-y_n|}\leq M$ para todo $n\geq n_0$. O que é uma contradição pois $k_n\to\infty$.
 - II. Se $a \neq b$, a continuidade de f, da norma e os limites acima garantem que o lado direito de $k_n < \frac{|f(x_n) f(y_n)|}{|x_n y_n|}$ não pode tender ao infinito. O que é uma contradição pelo mesmo motivo do argumento anterior.
- 5. a)Um conjunto $M \subset \mathbb{R}^n$ chama-se uma superfície de dimensão m e classe C^k quando todo ponto $p \in M$ está contido em algum aberto $U \subset \mathbb{R}^n$ tal que $V = U \cap M$ é a imagem de uma parametrização $\varphi : V_0 \to V$, de dimensão m e classe C^k . O conjunto V é um aberto em M, chamado uma vizinhança parametrizada do ponto p.
 - **b)** Defina T_pM , como $T_pM:=\{v\in\mathbb{R}^n:v=\lambda'(0),\lambda:(-\epsilon,\epsilon)\longrightarrow M,\lambda(0)=p\}.$
 - c) Seja $\varphi: V_0 \to V$, uma parametrização de dimensão m e classe C^k , onde $\varphi(x_0) = p$. Note que, sendo $\varphi'(x_0)$ uma transformação linear injetiva, sua imagem $\varphi'(x_0) \cdot \mathbb{R}^m$ é um subespaço vetorial de dimensão m. Para concluir a questão, vamos mostrar que vale a igualdade $T_pM = \varphi'(x_0) \cdot \mathbb{R}^m$.

De fato, suponha que $v \in T_pM$. Podemos supor que ϵ é pequeno de modo que a imagem de λ está contida na imagem V de uma parametrização $\varphi: V_0 \to V \subset M$ com $\varphi(x_0) = p$. Então $\gamma = \varphi^{-1} \circ \lambda: (-\epsilon, \epsilon) \longrightarrow V_0$ é um caminho diferenciável em \mathbb{R}^m com $\gamma(0) = x_0$. Denotando $w = \gamma'(0)$, temos $\varphi'(x_0) \cdot w = \varphi'(x_0) \cdot (\varphi^{-1} \circ \lambda)'(0) = (\varphi \circ \varphi^{-1} \circ \lambda)'(0) = \lambda'(0) = v$. Portanto, $T_pM \subset \varphi'(x_0) \cdot \mathbb{R}^m$.

Para mostrar que $T_pM \supset \varphi'(x_0) \cdot \mathbb{R}^m$ considere um vetor $v = \varphi'(x_0)u$ de $\varphi'(x_0) \cdot \mathbb{R}^m$ e defina o caminho $\gamma : (-\epsilon, \epsilon) \longrightarrow V_0$ pondo $\gamma(t) = x_0 + tu$. Então $v = \lambda'(0)$ onde $\lambda = \varphi \circ \gamma$. Portanto, $T_pM \supset \varphi'(x_0) \cdot \mathbb{R}^m$.