Padrão de Resposta - Doutorado 2024.2

- 1. Seja $X \subset \mathbb{R}^m$. Uma aplicação $f \colon X \to \mathbb{R}^n$ diz-se localmente constante quando para cada $x \in X$ existe uma bola B de centro x tal que f restrita a B é constante. Prove que, toda aplicação contínua $f \colon X \to \mathbb{R}^n$ cuja imagem f(X) é um conjunto discreto, é localmente constante.
- 2. Seja $T: \mathbb{R}^m \to \mathbb{R}^n$ uma transformação linear. Prove que se $T \neq 0$ então T não é uma aplicação limitada. Se $X \subset \mathbb{R}^m$ é uma conjunto limitado, prove que a restrição $T_X: X \to \mathbb{R}^n$ de T ao conjunto X é uma aplicação limitada.
- 3. Seja $f: U \to \mathbb{R}^m$ de classe C^k $(k \ge 1)$ no aberto $U \subset \mathbb{R}^m$. Se $a \in U$ é tal que $f'(a): \mathbb{R}^m \to \mathbb{R}^m$ é invertível então existe uma bola aberta $B = B(a; \delta) \subset U$ tal que a restrição $f|_B$ é um difeomorfismo sobre um aberto V, com $f(a) \in V$? Em caso afirmativo justifique com uma demonstração, em caso negativo com um contra-exemplo.
- 4. Seja \wedge o produto vetorial em \mathbb{R}^3 . Para todo $v \in \mathbb{R}^3$ e todo caminho $f : [a, b] \to \mathbb{R}^3$ integrável, prove que

$$\int_{a}^{b} [v \wedge f(t)]dt = v \wedge \int_{a}^{b} f(t)dt.$$

5. Prove que o conjunto das matrizes ortogonais $(n \times n)$ é um conjunto compacto.

Respostas:

Q1- Seja $x_0 \in X$. Por f(X) ser discreto, existe $\epsilon > 0$ tal que

$$B(f(x_0), \epsilon) \cap f(X) = f(x_0). \tag{1}$$

Por f ser contínua, existe $\delta > 0$ de modo que, $x \in B(x_0, \delta) \Rightarrow f(x) \in B(f(x_0), \epsilon)$. Disso e da Equação (1), segue-se que f é constante em $B(x_0, \delta)$.

- Q2- Se |T(v)| = a > 0 então |T(nv)| = na. Assim T não é limitada. Tomando $c = \max\{|Te_1|, ..., |Te_m|\}$. Se o conjunto $X \subset \mathbb{R}^m$ é limitado então existe k > 0 tal que, $\sum |x_i| \le k$ para todo $x = (x_1, ..., x_m) \in X$. Donde $|T(x)| = |\sum x_i Te_i| \le \sum |x_i| |Te_i| \le c \sum |x_i| \le ck$. Portanto $T_X : X \to \mathbb{R}^n$ é limitada.
- Q3- Sim. Justificativa: Podemos admitir que existe $\delta > 0$ tal que $\bar{B} = B[a; \delta] \subset U$ e que $f|_{\bar{B}}$ é injetiva, assim $f: B \to f(B)$ é um homeomorfismo. Note que f'(x) depende continuamente de x. Também sabemos que f'(a) é invertível, donde podemos supor que, para todo $x \in B$ temos $f'(x): \mathbb{R}^m \to \mathbb{R}^m$ é invertível. Agora basta mostrar que $f(B) \subset \mathbb{R}^m$ é aberto e o resultado segue.
- **Q4-** Seja $P = \{t_0 = a, t_1, t_2, ..., t_k = b\}$ uma partição de [a, b]. Usando propriedade do produto vetorial, a soma de Riemann do caminho $v \wedge f(t)$ é dada por

$$\sum_{i=1}^{k} (t_i - t_{i-1})(v \wedge M_i) = \sum_{i=1}^{k} (v \wedge (t_i - t_{i-1})M_i),$$

onde $M_i = f(t_i)$. Fazendo a norma da partição P tender a zero, obtemos que $\int_a^b [v \wedge f(t)] dt = v \wedge \int_a^b f(t) dt$.

Universidade Federal de Alagoas Instituto de Matemática

Q5- Seja M_n o conjunto das matrizes n por n. Defina a aplicação contínua $f: M_n \to M_n$, dada por $f(A) = AA^T$. Como o conjunto das matrizes ortogonais é formado por $f^{-1}(I_d)$, segue que tal conjunto é fechado. A limitação segue do fato de que em uma matriz ortogonal, suas colunas formam um conjunto ortonormal.