Seleção Doutorado IM 2022.2

July 2022

Problema 1. Mostre que todo aberto conexo é conexo por caminhos poligonais.

Problema 2. Prove que toda submersão C^1 é uma aplicação aberta.

Problema 3. Suponha que M e N são duas superfícies de classe C^k de dimensões m e n, respectivamente. Se elas forem difeomorfas e uma delas for orientável, prove que a outra é orientável também.

Problema 4. Seja $f: U \longrightarrow \mathbb{R}^n$ contínua no aberto $U \subset \mathbb{R}^m$ com $[a, a+v] \subset U$. Se f é diferenciável em todos os pontos de (a, a+v) então, para toda $T \in \mathcal{L}(\mathbb{R}^m; \mathbb{R}^n)$, prove que

$$|f(a+v) - f(a) - T(v)| \le \sup_{0 < t < 1} |f'(a+tv) - T| \cdot |v|.$$

Problema 5. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função integrável cujo valor é 0, salvo num conjunto de medida nula. Determine (com prova) o valor de $\int f(x)dx$.

Gabarito da Seleção Doutorado IM 2022.2

July 2022

1. Seja A o tal conjunto e fixe $a \in A$ qualquer. Considere X o subconjunto de A dos pontos que podem ser ligados a a por um caminho poligonal. Seja $x \in X \subset A$. Como $x \in A$, existe uma bola B tal que $x \in B \subset A$. Mas qualquer ponto de B pode ser ligado a x por um segmento de reta. Logo $B \subset X$, donde X é aberto.

Considere Y o subconjunto de A dos pontos que $\mathbf{n}\tilde{\mathbf{a}}\mathbf{o}$ podem ser ligados a a por um caminho poligonal. Seja $y \in Y \subset A$. Como $y \in A$, existe uma bola B' tal que $y \in B' \subset A$. Mas qualquer ponto de B pode ser ligado a x por um segmento de reta. Assim, se existisse algum ponto de B' que possa ser ligado a a por um caminho poligonal, y também poderia, o que seria um absurdo. Logo $y \in B' \subset Y$, donde Y é aberto.

Para concluir note que $X \cup Y$ é uma cisão de A, que deve ser trivial. Como $a \in X$, segue que X = A, o que encerra a demonstração.

2. Sendo f uma submersão, pelo Teorema da Forma Local das Submersões, para todo $p \in U$, existe um aberto $Z_p \subset U$ e um difeomorfismo $h: V \times W \longrightarrow Z_p$ tal que $f \circ h(x,w) = w$ para todo $(x,w) \in V \times W$, onde V e W são abertos. Ou seja, $f \circ h = \pi$ onde $\pi(x,w) = w$. Note que π depende de Z_p e que tal função é uma aplicação aberta.

Dado um aberto $A \subset Z_p$, como $f = \pi \circ h^{-1}$, temos que $f(A) = \pi \circ h^{-1}(A)$ é um conjunto aberto pois h é um difeomorfismo. Portanto, f restrito a Z_p é uma aplicação aberta.

Agora para qualquer aberto $A \subset U$ escreva $A = \bigcup_{p \in A} Z_p$, onde $f|_{Z_p}$ é aberta. Daí temos $f(A) = \bigcup_{p \in A} f(Z_p)$ que é uma reunião de abertos. Como queríamos.

3. Seja $f: M \longrightarrow N$ um difeomorfismo e suponha que M é orientável, onde \mathcal{A} é um atlas coerente em M. Defina um atlas \mathcal{C} em N pondo $\mathcal{C} := \{f \circ \phi | \phi \in \mathcal{A}\}$. Como f é um difeomorfismo, temos que \mathcal{C} é um atlas. Isto é, seus elementos são parametrizações (imersões e homeomorfismos) cujas imagens cobrem N. Além disso, como

$$((f \circ \psi)^{-1} \circ (f \circ \phi)) = \psi^{-1} \circ \phi,$$

segue da Regra da Cadeia e de propriedades básicas dos determinantes que a compatibilidade entre as cartas de \mathcal{A} implica na compatibilidade entre as cartas de \mathcal{C} . Portanto N é orientável e, como f^{-1} também é um difeomorfismo a recíproca também é verdadeira.

4. Sendo T uma transformação linear, vale T' = T. Definindo g = f - T, temos que g'(a)v = f'(a)v - T(v) para todo $a \in U$ e $v + a \in U$. Vamos estudar a função $g \circ \lambda$ onde b := a + v e $\lambda(t) = tb + (1 - t)a$, $t \in [0, 1]$. Antes disso, note

$$g(b) - g(a) = f(a+v) - T(a+v) - f(a) + T(a)$$

= $f(a+v) - f(a) - T(v)$.

Sendo $\sup_{t\in[0,1]}|f'(tb+(1-t)a)-T|=\infty$, não há o que provar. Caso $\sup_{t\in[0,1]}|f'(tb+(1-t)a)-T|<\infty$, aplicando desigualdade do Valor Médio para caminhos (em $g \circ \lambda$), obtemos

$$|f(a+v) - f(a) - T(v)| = |g(b) - g(a)|$$

$$\leq \sup_{t \in [0,1]} |f'(tb + (1-t)a) - T||v|.$$

Como queríamos.

5. Sabemos que se f é integrável, |f| é integrável. O complementar de um conjunto de medida nula, sendo denso, possui pontos em toda bola. Logo, como $|f(x)| \geq 0$ para todo $x \in A,$ tem-se $m_B = 0,$ donde $s(|f|;P) = \sum_{B \in P} m_B \cdot$ vol B = 0 seja qual for a partição do bloco A. Então a integral inferior de |f| em A deve ser 0 e, como f é integrável, $\int_A |f(x)| dx = 0$, portanto, $\int_A f(x) dx = 0$.