Universidade Federal de Alagoas Instituto de Matemática

Padrão de Resposta - Prova de Doutorado

1. Prove que duas normas quaisquer no espaço \mathbb{R}^n são equivalentes.

Solução: Mostre que toda norma em \mathbb{R}^n é equivalente à norma da soma.

2. Sejam $X \subset Y \subset \overline{X}$ em \mathbb{R}^n . Se X é conexo, então Y também é conexo.

Solução: Como todo ponto de Y é aderente a X, para todo conjunto não-vazio A, aberto em Y, tem-se $A \cap X \neq 0$. Com este fato prove que Y só admite cisão trivial.

3. Seja $A \subset \mathbb{R}^n$ um conjunto convexo. Prove que a função $f: \mathbb{R}^n \to \mathbb{R}$ definida por f(x) = d(x, A) é convexa.

(obs.: d(x, A) denota a distância de x à A)

Solução: Para $x, y \in \mathbb{R}^n$ e $t \in [0,1]$, sejam $\overline{x}, \overline{y} \in \overline{A}$ tais que $d(x,A) = |x - \overline{x}|$ e $d(y,A) = |y - \overline{y}|$. Então $(1-t)\overline{x} + t\overline{y} \in \overline{A}$, pois o fecho de um conjunto convexo é convexo. Como $d(x,A) = d(x,\overline{A})$, tem-se

$$f((1-t)x + ty) = d((1-t)x + ty, A) \le |(1-t)x + ty, (1-t)\overline{x} + t\overline{y}|$$

= $|(1-t)(x - \overline{x}) + t(y - \overline{y})| \le (1-t)|x - \overline{x}| + t|y - \overline{y}| = (1-t)f(x) + tf(y).$

4. Sejam $F \subset \mathbb{R}^m$ um subconjunto fechado e $f: F \to F$ uma aplicação tal que

$$|f(x) - f(y)| \le c|x - y|, \ \forall \ x, y \in F,$$

onde $0 \le c < 1$. Prove que f tem um único ponto fixo.

Solução: Considere qualquer ponto $x_0 \in F$, afirmamos que a sequência definida por

$$x_{k+1} = f(x_k) \text{ onde } k = 0, 1, 2, \dots$$
 (1)

converge para um ponto $a \in F$, que é o único ponto fixo de f. Com efeito, usando que $|f(x) - f(y)| \le c|x - y|$ e $c \le c < 1$, mostre que (x_k) é uma sequência de Cauchy, logo convergente para um ponto $a \in F$, pois F é fechado. Como f é contínua, fazendo $k \to \infty$ na Eq. (1), obtemos que f(a) = a, mostrando assim a existência de um ponto fixo. Em relação a unicidade, suponha que f tenha um outro ponto fixo, ou seja, f(b) = b. Assim, teríamos que

$$|f(b) - f(a)| = |b - a| < c|b - a|.$$

Um absurdo, desde que $0 \le c < 1$. Consequentemente, f tem um único ponto fixo.

5. Sejam p(X) e q(X) polinômios em n variáveis (x_1, \ldots, x_n) de grau menor ou igual a s-1. Assuma que existem números a>0 e C>0 tal que

$$|p(X) - q(X)| \le C|X|^s,$$

para todo X tal que $|X| \leq a$. Mostre que p = q. Deduza que o polinômio da fórmula de Taylor é unicamente determinado.

Solução: Com essa desigualdade é possível mostrar que todas as derivadas de ordem menor que s na origem são iguais e usando isso deduz-se a igualdade dos polinômios.