Federal University of Alagoas
Graduate Program in Mathematics

Ph.D. Program Entrance Exam
Date: December 3rd, 2018 Time: 15h30-18h30

Candidate:

Q1- Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $a \in \mathbb{R}^{n}$. Prove that if $f(a)$ does not belong to the closed ball $B[b ; r] \subset \mathbb{R}^{m}$, then there exists $\delta>0$ such that $f(x)$ does not belong to $B[b ; r]$ for all $x \in \mathbb{R}^{n}$ satisfying $|x-a|<\delta$.

Solution: Since $f(a) \notin B[b ; r]$, we have $|f(a)-b|>r$, that is, $|f(a)-b|-r>0$. Since f is continuous at a, there exists $\delta>0$ such that $|f(x)-f(a)|<|f(a)-b|-r$ for all $x \in \mathbb{R}^{n}$ satisfying $|x-a|<\delta$. Then, it follows from the Triangle Inequality that

$$
\begin{aligned}
|f(x)-b| & =|f(x)-f(a)+f(a)-b| \\
& \geq|f(a)-b|-|f(x)-f(a)| \\
& >r
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}$ satisfying $|x-a|<\delta$.
Q2- Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a differentiable function such that $f(x / 2)=f(x) / 2$ for each $x \in \mathbb{R}^{n}$. Prove that f is a linear functional.

Solution: Since $f(x / 2)=f(x) / 2$ for each $x \in \mathbb{R}^{n}$, we have $f(0)=f(0 / 2)=f(0) / 2$, that is, $f(0)=0$. By the other hand, it follows directly from the hypothesis that

$$
f\left(\frac{x}{2^{k}}\right)=\frac{f(x)}{2^{k}}
$$

for all $k \in \mathbb{N}$. So, since f is differentiable, we have

$$
f^{\prime}(0) \cdot x=\lim _{t \rightarrow 0} \frac{f(t x)}{t}=\lim _{k \rightarrow \infty} \frac{f\left(\frac{x}{2^{k}}\right)}{\frac{1}{2^{k}}}=\lim _{k \rightarrow \infty} f(x)=f(x) .
$$

This proves that $f=f^{\prime}(0)$, which is a linear functional.
Q3- Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3} y^{2}}{x^{4}+y^{4}}, \text { if } & (x, y) \neq(0,0) \\
0, \text { if } & (x, y)=(0,0),
\end{array}\right.
$$

a) Show that there exists $\frac{\partial f}{\partial v}(0,0)$, for all $v \in \mathbb{R}^{2}$.
b) Is the equality $\langle\nabla f(0,0), v\rangle=\frac{\partial f}{\partial v}(0,0)$ holds?
c) What can be said about the differentiability of f at $(0,0)$?

Solution:

a) Set $v=(a, b)$. By a straightforward computation we have that

$$
\frac{\partial f}{\partial v}(0,0)=\lim _{t \rightarrow 0}\left(\frac{f(t a, t b)-f(0,0)}{t}\right)=\frac{a^{3} b^{2}}{a^{4}+b^{4}}
$$

So, there exists $\frac{\partial f}{\partial v}(0,0)$ and it is equal to $\frac{a^{3} b^{2}}{a^{4}+b^{4}}$.
b) False. Indeed, $\nabla f(0,0)=(0,0)$, however $\frac{\partial f}{\partial v}(0,0)$ is not always zero.
c) No, because of the previous item.

Q4- Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function satisfying

$$
|f(x)-f(y)| \leq|x-y|^{2}
$$

for all $x, y \in \mathbb{R}^{m}$. Show that f is a constant function.
Solution: Notice that f is differentiable and that $d f(x)=0$ for all $x \in \mathbb{R}^{m}$. Indeed,

$$
f(x+h)=f(x)+O(h)+r(h),
$$

where O is the identically zero map and r satisfies

$$
\lim _{h \rightarrow 0} \frac{\|r(h)\|}{\|h\|}=\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(y)-O(h)\|}{\|h\|} \leq \limsup _{h \rightarrow 0} \frac{\|h\|^{2}}{\|h\|}=0 .
$$

Thus, $\lim _{h \rightarrow 0} \frac{\|r(h)\|}{\|h\|}=0$ and so f is differentiable and $d f(x)=0$. Using that \mathbb{R}^{m} is connected, we conclude that f is constant.
Q5- Let $U \subset \mathbb{R}^{2}$ be an open set in \mathbb{R}^{2}. Let $a(x, y)$ and $b(x, y)$ be positive functions defined on $U \cup \partial U$, where ∂U denotes the boundary of U. Suppose that the quadratic form given by the matrix

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

is positive definite for all (x, y). Given a function of class C^{2}, v, defined on $U \cup \partial U$ we define the operator L by

$$
L v=a \frac{\partial^{2} v}{\partial x^{2}}+b \frac{\partial^{2} v}{\partial y^{2}}
$$

which with this positivity condition is called of elliptic operator. A function f is said to be strictly subharmonic relative to L if $L v>0$. Show that a strictly subharmonic function cannot attain its maximum value at any point of U.

Solution: In an interior point of maximum we would have $\frac{\partial^{2} v}{\partial x^{2}} \leq 0$ e $\frac{\partial^{2} v}{\partial y^{2}} \leq 0$. Since a and b are nonnegative, then $L v$ at this point of maximum is nonpositive, which contradicts the hypothesis of $L v>0$.

