

Universidade Federal de Alagoas Instituto de Matemática Programa de Pós-Graduação em Matemática

Exame de Geometria Diferencial

Data: 06 de Agosto de 2021

A luno.			
A IIIno.			

- 1. Seja α uma curva plana dada em coordenadas polares por $\rho = \rho(\theta), a \leq \theta \leq b$.
 - (a) Mostre que o comprimento de arco $\mathbf{l}(\alpha)$ de α é

$$\mathbf{l}(\alpha) = \int_a^b \sqrt{\rho^2 + \left(\frac{d\rho}{d\theta}\right)^2} d\theta$$

(b) Mostre que a curvatura é

$$\kappa(\theta) = \frac{2(\rho')^2 - \rho \rho'' + \rho^2}{((\rho')^2 + \rho^2)^{3/2}},$$

O símbolo ' denota a derivação com respeito a θ .

- 2. Prove que se uma superfície regular S encontra um plano Π em um único ponto $p \in S$, então Π coincide com o plano tangente a S em p. Generalize o resultado acima para o caso em que $S \cap \Pi$ tem mais de um ponto e S está de um lado de Π .
- 3. Seja $S \subset \mathbb{R}^3$ uma superfície regular. Fixe $p \in S$ e $u \in T_pS$ com |u| = 1. Demonstre que a curvatura média H(p) de S em p é dada por

$$H(p) = \frac{1}{\pi} \int_0^{\pi} k_n(\theta) d\theta,$$

onde $k_n(\theta)$ é a curvatura normal de S em p na direção que faz um ângulo θ com u.

4. Seja $\mathbf{x}: U \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3$ uma parametrização isotérmica da superfície regular S, ou seja, $E = G = \lambda(u, v) > 0$ e F = 0. Mostre que a curvatura Gaussiana K = K(u, v) de S em $p = \mathbf{x}(u, v)$ é dada por

$$K = -\frac{1}{2\lambda} \Delta \ln \lambda,$$

onde $\Delta \varphi$ denota o Laplaciano $\frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial^2 \varphi}{\partial v^2}$ da função φ . Em seguida, conclua que quando $E = G = (u^2 + v^2 + c)^{-2}$ e F = 0, então K = constante = 4c.

Boa Prova!!