

Universidade Federal de Alagoas Exame de qualificação - Análise no \mathbb{R}^n (22/12/2021)

Duração: 4 horas

Aluno(a):

- 1. Seja $h: B \to \mathbb{R}^n$ o homeomorfismo da bola de centro 0 e raio 1 em \mathbb{R}^n dado por h(x) = x/(1-|x|). Fixado arbitrariamente $a \in \mathbb{R}^n$, seja $T: \mathbb{R}^n \to \mathbb{R}^n$ a translação de T(x) = x+a. Considere o homeomorfismo $\varphi = h^{-1}Th: B \to B$. Prove que $\lim_{x\to b} \varphi(x) = b$ para todo $b \in \partial B$. Conclua que, dados arbitrariamente $c, d \in B$ existe um homeomorfismo $\bar{\varphi}: \bar{B} \to \bar{B}$, tal que $\bar{\varphi}(c) = d$, $\bar{\varphi}(x) = x$ para todo $x \in \partial B$.
- 2. Seja $f:U\to\mathbb{R}$ de classe C^1 no abertu $U\subset\mathbb{R}^m$. Dados $a\in U$ e $\varepsilon>0$, prove que existe $\delta>0$ tal que

$$x, y \in U, |x - a| < \delta, |y - b| < \delta \Rightarrow f(y) - f(x) = f'(a)(y - x) + r(x, y),$$

onde $|r(x,y)| \le \varepsilon |x-y|$.

- 3. Seja $f:[0,2]\to\mathbb{R}$, positiva, tal que $\int_0^1 f(t)dt=\int_1^2 f(t)dt=1$. Para cada $x\in[0,1]$, prove que existe um único $g(x)\in[1,2]$ tal que $\int_x^{g(x)} f(t)dt=1$. Mostre que a função $g:[0,1]\to\mathbb{R}$ assim definida é de classe C^1 .
- 4. Sejam $b \in \mathbb{R}^{n+1} \setminus \{0\}$, $c \in \mathbb{R}$ e H o hiperplano de \mathbb{R}^{n+1} definido pela equação $\langle b, x \rangle = c$. Use o método dos multiplicadores de Lagrange para mostrar que o ponto de H mais próximo do ponto $a \in \mathbb{R}^{n+1}$ é $x = a + \frac{c \langle b, a \rangle}{\|b\|^2} \cdot b$.
- 5. Sejam $A\subset\mathbb{R}^n$ um retângulo fechado e $f:A\to\mathbb{R}$ uma função contínua. Mostre que existe $c\in A$ tal que

$$\frac{1}{vol.A} \int_{A} f(x)dx = f(c).$$

Boa Prova