Universidade Federal de Alagoas Instituto de Matemática Programa de Pós-Graduação em Matemática

EXAME DE MESTRADO EM ANÁLISE

Data: 28 de Julho de 2016

Banca Examinadora

Início: 13hs. Término: 17hs. Prof. Carlos G. do Rei Filho

Prof. Marcos Ranieri

Escolha 5 das 6 questões abaixo:

1- Prove que toda cobertura aberta $K \subset \bigcup_{\lambda \in L} A_{\lambda}$ de um conjunto compacto $K \subset \mathbb{R}^n$ possui um número de Lebesgue.

(Recorde: $\delta > 0$ é um número de Lebesgue de uma cobertura $X \subset \bigcup_{\lambda \in L} C_{\lambda}$ se, para todo $Y \subset X$ com $diam(Y) < \delta$, existir $\lambda \in L$ tal que $Y \subset C_{\lambda}$).

2- Determine os pontos de altura máxima e mínima, em relação ao eixo 0z, da superfície $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + z^2 - x + 4y - 2z + 6 = 0\}.$

3- Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ uma aplicação C^1 e própria. Suponha que para todo ponto $x \in \mathbb{R}^n$, a matriz jacobiana de f em x é invertível. Mostre que f é sobrejetiva.

4- a) Mostre que a função diferenciável $z: \mathbb{R}^2 \to \mathbb{R}$, definida pela equação F(x-az,y-bz)=0, onde F é uma função diferenciável arbitrária de duas variáveis, a e b constantes, satisfaz

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1$$

b) Dada a função

$$f(x) = \begin{cases} \frac{x^3}{y^2} e^{-\frac{x^2}{y}}, & se \ y > 0, \ x \in \mathbb{R} \\ 0, & se \ y = 0, \ x \in \mathbb{R} \end{cases}$$

verifique que

$$\frac{d}{dx}\left(\int_0^1 f(x,y)dy\right) \neq \int_0^1 \frac{\partial}{\partial x}(f(x,y))dy.$$

- 5- Classifique cada uma das afirmações abaixo como verdadeira ou falsa. Para as afirmações verdadeiras apresente uma justificativa e para as afirmações falsas dê um contra-exemplo.
 - (a) A reunião de uma família de compactos com um ponto em comum é um conjunto compacto.
 - (b) $\mathbb{R}^3 \{0\}$ é homeomorfo a $\mathbb{S}^2 \times \mathbb{R}$.
 - (c) Seja $f:M\to N$ um difeomorfismo local entre superfícies diferenciáveis. Se N é orientável, então M é orientável.

6- Sejam $X\subset\mathbb{R}^n$ um subconjunto J-mensurável e $f:X\to\mathbb{R}$ uma função integrável. Se $f(x)\geq 0$ para todo $x\in X$ e $\int_X f(x)dx=0$, então $\{x\in X; f(x)\neq 0\}$ tem medida n-dimensional nula.