

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA

Banca examinadora Maria Andrade e Marcos Petrúcio Aluno(a):

Análise no \mathbb{R}^n - Exame de Qualificação de Mestrado

- Justifique todas as suas respostas de forma clara.
- Você pode escolher 5 das 6 questões para resolvê-las.
- Mostre que o conjunto das matrizes n x n com determinate 1 é fechado, ilimitado e com interior vazio em \mathbb{R}^{n^2} .
- 2) Seja $f: \mathbb{R}^m \to \mathbb{R}^m$ de classe C^1 tal que para $x, v \in \mathbb{R}^m$ quaisquer tem-se $\langle f'(x) \cdot v, v \rangle \geq 0$ $\alpha |v|^2$, onde α é uma constante positiva. Prove que $|f(x) - f(y)| \ge \alpha |x - y|$ para x, yarbitrários. Conclua que $f(\mathbb{R}^m)$ é fechado e daí que f é um difeomorfismo de \mathbb{R}^m sobre si
- $\widehat{\mathfrak{Z}}$) Considere a aplicação $f: M(n \times n) \to M(n \times n)$ definida por $f(X) = X^k, \ k \geq 1$. Mostre os seguintes itens:
 - a) $f'(X)V = \sum_{i=1}^{k} X^{i-1}VX^{k-i}$
 - b) $\exp: M(n \times n) \to M(n \times n)$ definida por

$$\exp(X) = e^X = \sum_{n=0}^{\infty} \frac{X^n}{n!} = I + X + \frac{X^2}{2!} + \frac{X^3}{3!} + \cdots$$

é de classe C^1 e sua derivada em X=0 é a transformação linear identidade.

- c) Mostre que existe uma aplicação $\log: U \to M(n \times n)$, de classe C^1 numa vizinhança U da transformação identidade $I \in M(n \times n)$, tal que $e^{\log(X)} = X$, para todo $X \in U$.
- 4.) Seja $O(3) = \{X \in M(3 \times 3); XX^T = I\}$. Mostre que:
 - a) O(3) é uma superfície de classe C[∞] de dimensão 3.
 - b) O(3) é compacta. Ela é orientável?
 - c) $T_IO(3)=\{v\in M(3\times 3);\ v+v^T=0\}$, onde $T_IO(3)$ é o plano tangente de O(3) no
- (5.) Se $X \subset \mathbb{R}^p$ e $v \in \mathbb{R}^p$, escreve-se $X + v = \{x + v; x \in X\}$. Sejam $M, N \subset \mathbb{R}^p$ superficies de classe C^1 tais que $\dim(M) + \dim(N) < p$. Mostre que o conjunto V dos vetores v tais que M+v é disjunta de N é denso em \mathbb{R}^p . Se M e N são compactas, além de denso, V é um aberto de \mathbb{R}^p .
- © 6.) Seja $f: U \to \mathbb{R}^m$ de classe C^1 no aberto $U \subset \mathbb{R}^m$. Para algum $a \in U$, seja $f'(a): \mathbb{R}^m \to \mathbb{R}^m$ um isomorfismo. Mostre que $\lim_{r \to 0} \frac{vol(f(B[a;r]))}{vol(B[a;r])} = |detf'(a)|$. Dica: Você pode usar o Teorema da Mudança de Variáveis para Integrais.

Duração: 4h