UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA DISSERTAÇÃO DE MESTRADO

TEOREMAS DE SEMI-ESPAÇO PARA HIPERSUPERFÍCIES MÍNIMAS E SELF-SHRINKERS

DAVIS MAGALHÃES DE FREITAS

DAVIS MAGALHÃES DE FREITAS

TEOREMAS DE SEMI-ESPAÇO PARA HIPERSUPERFÍCIES MÍNIMAS E SELF-SHRINKERS

Dissertação na área de Geometria Diferencial, submetida à banca examinadora, designada pelo Programa de Pós-Graduação em Matemática da Universidade Federal de Alagoas, como parte dos requisitos necessários para obtenção do grau de Mestre em Matemática.

Orientador: Prof. Dr. Marcos Petrucio de Almeida Cavalcante

Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central

Divisão de Tratamento Técnico

Bibliotecária Responsável: Helena Cristina Pimentel do Vale - CRB4 - 661

F866t Freitas, Davis Magalhaes de.

Teoremas de semi-espaço para hipersuperfíicies mínimas e self-shrinkers / Davis Magalhaes de Freitas. – 2019.

32 f.: il.

Orientador: Marcos Petrúcio de Almeida Cavalcante

Dissertação (mestrado em Matemática) — Universidade Federal de Alagoas. Instituto de Matemática. Programa de Pós-Graduação em Matemática. Maceió, 2019.

Bibliografia: f. 32.

1. Variedade riemannianas. 2. hipersuperfíicies. 3. Curvatura. 4. Interseção. I. Título.

CDU: 514.764.7

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GFRADUAÇÃO EM MATEMÁTICA DISSERTAÇÃO DE MESTRADO

DAVIS MAGALHÃES DE FREITAS

TEOREMAS DE SEMI-ESPAÇO PARA HIPERSUPERFÍCIES MÍNIMAS E SELF-SHRINKERS

Dissertação na área de Geometria Diferencial, submetida em 10 de abril de 2019 à banca examinadora, designada pelo Programa de Pós-Graduação em Matemática da Universidade Federal de Alagoas, como parte dos requisitos necessários para obtenção do grau de Mestre em Matemática.

Prof. Dr. Alpaão Mendes do Rêgo Gouveia

Wardon Livera de Almeida Cavalcante

Prof. Dr. Alpaão Mendes do Rêgo Gouveia

Prof. Dr. Darlan Ferreira de Oliveira - UEFS

Agradecimentos

A meus pais, Damião e Judite, pelo amor, dedicação e apoio incondicional, sempre ao meu lado, são os principais pilares na minha forma c ao moral. Cada pequena conquista minha não seria possível sem eles, serei eternamente grato por tudo.

A todos professores que contribuíram para minha formação, em especial ao professor Sinvaldo Gama, que ainda durante meu ensino médio proporcionou-me, de maneira prazerosa meus primeiros contatos com a matemática.

Ao meu orientador, Prof. Marcos Petrúcio, pela confiança, paciência e bom humor em todas nossas conversas.

A todos amigos que conquistei durante o curso e que levarei para a vida.

A meus irmãos, Danilo e Diogo, e minha namorada Emanuele Kamila que em muitos momentos foram o afago que eu precisava. Muito obrigado por toda amizade, compreensão e por nos momentos mais difíceis e aparentemente improdutivos, simplesmente, estarem ao meu lado.

A CAPES pelo apoio financeiro durante toda gradua formação. Meus sinceros agradecimentos a todos que de alguma forma contribuíram para o êxito deste trabalho.

Eu que nunca fui assim muito de ganhar junto as mãos ao meu redor faço o melhor que sou capaz só pra viver em paz.

Marcelo Camelo

RESUMO

Este trabalho trata, de modo geral, de uma abordagem sobre interseções de hipersuperfícies em variedades Riemannianas. Inicialmente falaremos sobre o Teorema de Frankel que trata de condições suficientes para que duas subvariedades se intersectem. Em seguida abordaremos o Teorema de Hoffman-Meeks que estabelece condições para que uma superfície mínima não possa ser limitada por um plano. Por fim daremos uma versão do teorema de Hoffman-Meeks para hipersuperfícies self-shrinkers.

Palavras-chave: Variedade Riemannianas; interseção; variação; auto-contraídas; mínimas; curvatura.

ABSTRACT

In this work, this is a general approach to intersections. First, we will talk about Frankel's Theorem, which deals with conditions sufficient for two sub-manifolds to intersect, then Hoffman-Meeks's Theorem, which talks about conditions so that a minimal surface can not be bounded by a plane and, finally, we will give a version of the theorem of Hoffman-Meeks for self-shrinker surfaces.

Keywords: Riemannian manifolds; intersection; variation; self-contracted; minimum; curvature.

SUMÁRIO

1	INTRODUÇÃO	10
Introduc	ão	10
2	O TEOREMA DE FRANKEL	11
2.1	Preliminares	11
2.2	O Teorema de Frankel	16
3	O TEOREMA DE HOFFMAN-MEEKS	21
3.1	Princípio da Tangência	21
3.2	O Teorema de Hoffman-Meeks	23
4	SELF-SHRINKERS	27
4.1	Exemplos	28
4.1.1	Esferas	28
4.1.1.1	Hiperplanos	29
4.1.1.2	Cilindros	29
4.1.2	Semicatenoides	30
4.2	O Teorema do Semi-espaço para self-shrinkers	31

1 INTRODUÇÃO

No Capítulo 1 faremos uma breve revisão de alguns conceitos em Geometira Diferencial de que nos auiliarão na prova do **Teorema de Frankel**: Em uma variedade Riemanniana M de dimensão n, conexa, completa e com curvatura seccional positiva duas subvariedades fechadas e totalmente geodésicas de dimensão n_1 e n_2 se intersectam sempre que $n_1 + n_2 \ge n$.

No Capítulo 2 começaremos introduzindo o Princípio da Tangência para superfícies mínimas que será necessário para podermos chegar ao **Teorema de Hoffman-Meeks** que diz que uma superfície mínima em \mathbb{R}^3 conexa, própria, não-planar e possivelmente ramificada, não está contida em um semiespaço.

No Capítulo 3 apresentaremos o Teorema do semiespaço para self-shrinkers..

2 O TEOREMA DE FRANKEL

Neste trabalho trataremos sempre de M como uma variedade Riemanniana, \langle , \rangle_p sua métrica Riemanniana em um ponto $p \in M$, omitindo o índice p sempre que esteja claro o ponto em que estamos trabalhando, denotaremos o espaço tangente a Σ em um ponto p por T_pM . Denotaremos por ∇ e K, respectivamente, sua conexão Riemanniana e a curvatura seccional de M. Uma subvariedade Σ de M que tenha codimensão 1 será chamada de hipersuperfície e o campo normal a Σ será denotado por \vec{N} .

Os objetos principais deste capítulo são variedades com curvatura seccional positiva como, por exemplo, são os casos de \mathbb{S}^n , elipsoides (visto com a imagem de uma aplicação $T: \mathbb{S}^n \to \mathbb{R}^{n+1}$ com $T((x_1, \ldots, x_n)) = (a_1x_1, \ldots a_nx_n)$ onde $a_i \in \mathbb{R}$), ovaloides e o \mathbb{RP}^n . Um famoso resultado devido a Hadamard cujo demonstração pode ser encontrada em [2, Teorema 2.4] diz que:

Teorema 1 (Hadamard) Se M é uma hipersuperfície compacta do \mathbb{R}^{n+1} com curvatura seccional positiva, então, a aplicação normal de Gauss $N: M \to \mathbb{S}^n$ é um difeomorfismo e M é estritamente convexa.

Ou seja em \mathbb{R}^{n+1} uma superfície compacta com curvatura seccional positiva é difeomorfa a esfera.

2.1 Preliminares

Faremos aqui, uma introdução à algumas noções básicas em geometria Riemanniana que serão necessárias ao longo deste trabalho, tendo como principais referências os livros [3] e [8].

Uma das definições que serão necessárias para o entendimento do teorema de Frankel é a de variação de uma curva em uma variedade.

Definição 1 Seja $c:[0,a] \to M$ uma curva diferenciável por partes em uma variedade M. Uma variação de c é uma aplicação contínua

$$F:(-\epsilon,\epsilon)\times [0,a]\to M$$

Tal que

- $F(0,t) = c(t), t \in [0,a]$
- existe uma partição $P = \{0 = t_0 < t_1 < \ldots < t_{k+1} = a\}$ do intervalo [0, a] de modo que a restrição de F a cada $(-\epsilon, \epsilon) \times [t_i, t_{i+1}]$, com $i = 0, 1, \ldots, k$, é diferenciável.

Uma variação diz-se própria se

$$F(s,0) = c(0)$$
 e $F(s,a) = c(a)$,

para todo $s \in (-\epsilon, \epsilon)$. Se F é diferenciável, a variação diz-se diferenciável.

Para cada $s \in (-\epsilon, \epsilon)$, a curva parametrizada $F_s : [0, a] \to M$ dada por $F_s(t) = F(s, t)$ será chamada curva da variação.

Para cada $t \in [0, a]$, a curva parametrizada $F_s : (-\epsilon, \epsilon) \to M$ dada por $F_s(t) = F(s, t)$ é chamada de curva transversal da variação. O vetor velocidade de uma curva transversal em s = 0, ou seja, $V(t) = \frac{\partial F}{\partial s}(0, t)$ é um campo vetorial ao longo de c(t) e será chamado de campo variacional de F.

Proposição 1 Dado um campo V(t), diferenciável por partes, ao longo de uma curva diferenciável por partes $c:[0,a] \to M$, existe uma variação $F:(-\epsilon,\epsilon) \times [0,a] \to M$ de c, tal que V(t) é o campo variacional de F, além disso, se V(0) = 0 = V(a) é possível escolher F como uma variação própria.

Demonstração 1 Este resultado pode ser encontrada em [3, Proposição 2.2].

Definição 2 Sejam $c:[0,a] \to M$ uma curva diferenciável por partes $e F:(-\epsilon,\epsilon) \times [0,a] \to M$ uma variação de c. Definimos as funções

• comprimento de arco:

$$L: (-\epsilon, \epsilon) \to \mathbb{R}$$

$$L(s) = L(F_s) = \int_0^s \left\| \frac{\partial F}{\partial s}(s, t) \right\| dt.$$

• energia:

$$E: (-\epsilon, \epsilon) \to \mathbb{R}$$

$$E(s) = \int_0^s \left\| \frac{\partial F}{\partial s}(s, t) \right\|^2 dt.$$

Observação 1 Notemos que para s = 0 temos os seguintes valores para o comprimento de arco e energia para c

$$L(0) = L(F_0) = L(c) = \int_0^s \left\| \frac{dc}{ds}(t) \right\| dt$$

$$E(0) = E(F_0) = E(c) = \int_0^s \left\| \frac{dc}{ds}(t) \right\|^2 dt$$

Observação 2 Tomando f = 1 e $g = \left\| \frac{dc}{ds}(t) \right\|$ da designaldade de Schwarz

$$\left(\int_0^a fgdt\right)^2 \le \int_0^a f^2dt \cdot \int_0^a g^2dt$$

deste modo,

$$(L(c))^2 = \left(\int_0^a \left\| \frac{dc}{ds}(t) \right\| dt\right)^2 \le \int_0^a 1^2 dt \cdot \int_0^a \left\| \frac{dc}{ds}(t) \right\|^2 dt = aE(c)$$

E a igualdade acontece se, e somente se, g for um múltiplo de f, ou seja, se g é constante, e portanto, se t é proporcional ao comprimento de arco.

Definição 3 Seja $N \subset M$ uma subvariedade. Denotando por ∇^N a conexão de N, induzida pela métrica Riemanniana de M, definimos a segunda forma fundamental de N em M por

$$II(X,Y) = \nabla_X Y - \nabla_X^N Y$$

Diremos também que uma subvariedade é totalmente geodésica quando II for identicamente nula.

È um exercício clássico verificar que isto é equivalente a mostrar que as geodésicas de N são geodésicas de M também.

Lembremos também das noções de paralelismo e ortogonalidade para campos de vetores ao longo de uma curva.

Definição 4 Um campo vetorial V ao longo de uma curva $c:I\subset\mathbb{R}\to M$ é dito paralelo quando

$$\frac{DV}{dt}(t) = 0,$$

para todo $t \in I$.

Definição 5 Um campo vetorial V ao longo de uma curva $c: I \subset \mathbb{R} \to M$ é dito normal ao longo de c quando

$$\left\langle V(t), \frac{dc}{dt}(t) \right\rangle = 0,$$

para todo $t \in I$.

O teorema a seguir é conhecido como a fórmula da segunda variação de comprimento, este resultado foi demonstrado originalmente por Synge em [10] no ano de 1961 e será muito importante na demonstração do Teorema de Frankel.

Teorema 2 (Fórmula da segunda variação de comprimento) $Seja \ \gamma : [0,a] \to M$ uma uma geodésica $e \ F : (-\epsilon, \epsilon) \times [0,a] \to M$ uma variação de γ com seu campo variacional $\frac{\partial F}{\partial s}(0,t) = V(t)$ normal, unitário e paralelo ao longo de γ . Então para o funcional comprimento de F temos

$$\frac{dL}{ds}(0) = 0,$$

$$\frac{d^2L}{ds^2}(0) = -\int_0^a K(V, \frac{d\gamma}{dt})dt + \left\langle \nabla_{\frac{\partial F}{\partial s}} \frac{\partial F}{\partial s}, \frac{d\gamma}{dt} \right\rangle \Big|_0^a.$$

Demonstração 2 Como

$$L(s) = \int_0^s \left\| \frac{\partial F}{\partial t}(s, t) \right\| dt,$$

derivando sob o sinal da integral e depois usando a simetria da conexão Riemanniana obtemos

$$\frac{dL}{ds}(s) = \frac{d}{ds} \int_0^s \left\| \frac{\partial F}{\partial t}(s,t) \right\| dt$$

$$= \int_0^s \frac{d}{ds} \left\| \frac{\partial F}{\partial t}(s,t) \right\| dt$$

$$= \int_0^s \left\| \frac{\partial F}{\partial t}(s,t) \right\|^{-1} \left\langle \frac{D}{ds} \frac{\partial F}{\partial t}(s,t), \frac{\partial F}{\partial t}(s,t) \right\rangle dt$$

$$= \int_0^s \left\| \frac{\partial F}{\partial t}(s,t) \right\|^{-1} \left\langle \frac{D}{dt} \frac{\partial F}{\partial s}(s,t), \frac{\partial F}{\partial t}(s,t) \right\rangle dt$$

De modo que quando aplicarmos em s = 0, teremos

$$\frac{dL}{ds}(0) = \int_0^s \left\| \frac{\partial F}{\partial t}(0,t) \right\|^{-1} \left\langle \frac{D}{dt} \frac{\partial F}{\partial s}(0,t), \frac{\partial F}{\partial t}(0,t) \right\rangle dt$$

$$= \int_0^s \left\| \frac{d\gamma}{dt}(0,t) \right\|^{-1} \left\langle \frac{DV(t)}{dt}, \frac{d\gamma}{dt}(t) \right\rangle dt$$

Como V é um campo paralelo ao longo de γ obtemos

$$\frac{dL}{ds}(0) = 0.$$

Derivando mais uma vez e omitindo as variáveis temos que

$$\begin{split} \frac{d^2L}{ds^2}(s) &= \frac{d}{ds} \int_0^a \left\| \frac{\partial F}{\partial t} \right\|^{-1} \left\langle \frac{D}{dt} \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle dt \\ &= \frac{d}{ds} \int_0^a \left\| \frac{\partial F}{\partial t} \right\|^{-1} \left(\frac{d}{dt} \left\langle \frac{D}{dt} \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle - \left\langle \frac{\partial F}{\partial s}, \frac{D}{dt} \frac{\partial F}{\partial t} \right\rangle \right) dt \\ &= \int_0^a \frac{d}{ds} \left\| \frac{\partial F}{\partial t} \right\|^{-1} \left(\frac{d}{dt} \left\langle \frac{D}{dt} \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle - \left\langle \frac{\partial F}{\partial s}, \frac{D}{dt} \frac{\partial F}{\partial t} \right\rangle \right) dt \\ &= \int_0^a - \left\| \frac{\partial F}{\partial t} \right\|^{-3} \left\langle \frac{D}{ds} \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \right\rangle \left(\frac{d}{dt} \left\langle \frac{D}{dt} \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle - \left\langle \frac{\partial F}{\partial s}, \frac{D}{dt} \frac{\partial F}{\partial t} \right\rangle \right) dt \\ &+ \int_0^a \left\| \frac{\partial F}{\partial t} \right\|^{-1} \left(\frac{d}{dt} \left\langle \left\langle \frac{D}{ds} \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \right\rangle + \left\langle \frac{D}{dt} \frac{\partial F}{\partial s}, \frac{D}{ds} \frac{\partial F}{\partial t} \right\rangle \right) dt \\ &- \int_0^a \left\| \frac{\partial F}{\partial t} \right\|^{-1} \left(\left\langle \frac{D}{ds} \frac{\partial F}{\partial s}, \frac{D}{dt} \frac{\partial F}{\partial t} \right\rangle - \left\langle \frac{\partial F}{\partial s}, \frac{D}{ds} \frac{\partial F}{\partial t} \right\rangle \right) dt \end{split}$$

Agora, como

$$\frac{D}{ds}\frac{D}{dt}\frac{\partial F}{\partial t} = \frac{D}{dt}\frac{D}{ds}\frac{\partial F}{\partial t} + R\left(\frac{\partial F}{\partial t}, \frac{\partial F}{\partial s}\right)\frac{\partial F}{\partial t},$$

Quando aplicarmos em s = 0, teremos

$$\frac{D}{ds}\frac{D}{dt}\frac{\partial F}{\partial t} = \frac{D^2V}{dt} + R\bigg(\frac{d\gamma}{dt},V\bigg)\frac{d\gamma}{dt}.$$

Sabemos também que $\frac{DV}{dt} = 0$ e $\left\| \frac{d\gamma}{dt} \right\| = 1$ donde

$$\frac{d^{2}L}{ds^{2}}(0) = \int_{0}^{a} - \left\| \frac{d\gamma}{dt} \right\|^{-3} \left\langle \frac{DV}{dt}, \frac{d\gamma}{dt} \right\rangle \left(\frac{d}{dt} \left\langle \frac{DV}{dt}(t), \frac{d\gamma}{dt} \right\rangle - \left\langle V, \frac{D}{dt} \frac{d\gamma}{dt} \right\rangle \right) dt$$

$$+ \int_{0}^{a} \left\| \frac{d\gamma}{dt} \right\|^{-1} \left(\frac{d}{dt} \left(\left\langle \frac{D}{ds} \frac{DV}{dt}, \frac{d\gamma}{dt} \right\rangle + \left\langle \frac{DV}{dt}, \frac{D}{ds} \frac{d\gamma}{dt} \right\rangle \right) dt$$

$$- \int_{0}^{a} \left\| \frac{d\gamma}{dt} \right\|^{-1} \left(\left\langle \frac{DV}{ds}, \frac{d}{dt} \frac{d\gamma}{dt} \right\rangle - \left\langle V, \frac{D}{dt} \frac{D}{ds} \frac{d\gamma}{dt} + R \left(\frac{d\gamma}{dt}, V \right) \frac{d\gamma}{dt} \right\rangle \right) dt$$

$$= + \int_{0}^{a} \left(\frac{d}{dt} \left(\left\langle \frac{D^{2}V}{ds}, \frac{d\gamma}{dt} \right\rangle \right) - \left(\left\langle V, R \left(\frac{d\gamma}{dt}, V \right) \frac{d\gamma}{dt} \right\rangle \right) dt$$

$$= - \int_{0}^{a} K(V, \frac{d\gamma}{dt}) dt + \left\langle \nabla_{\frac{\partial F}{\partial s}} \frac{\partial F}{\partial s}, \frac{d\gamma}{dt} \right\rangle \right|_{0}^{a}$$

2.2 O Teorema de Frankel

Depois de ter abordado as definições necessárias para o teorema desejado, podemos então enuncia-lo.

Teorema 3 (Frankel) Em uma variedade Riemanniana M de dimensão n, conexa, completa e com curvatura seccional positiva duas subvariedades fechadas e totalmente geodésicas de dimensão n_1 e n_2 se intersectam sempre que $n_1 + n_2 \ge n$.

Demonstração 3 Sejam N_1 (de dimensão n_1) e N_2 (de dimensão n_2) duas subvariedades fechadas e totalmente geodésicas de M tais que $n_1 + n_2 \ge n$ e suponhamos por absurdo que N_1 e N_2 não se intersectam. Sejam $p = c(0) \in N_1$ e $q = c(l) \in N_2$ pontos extremos da geodésica unitária $c : [0, a] \to M$ que minimiza a distância entre N_1 e N_2 , isto é, $l(c) = \inf\{l(\gamma); \gamma \text{ tem ponto inicial em } N_1 \text{ e final em } N_2\}$. Como c minimiza a distância, ela intersecta N_1 e N_2 ortogonalmente, ver [8, capítulo 5, exercício 10].

Dados $\{v_1, v_2, \ldots, v_{n_1}\}$ elementos de uma base ortonormal de T_pN_1 podemos conseguir, usando o transporte paralelo, um subespaço W de T_qM gerado pelas imagens do transporte paralelo de cada v_i ao longo da geodésica c. Contudo temos que $(W+T_qN_2) \neq T_qM$, visto que $\frac{dc}{dt} \notin (W+T_qN_2)$, pois se existissem w em W e v em T_qN_2 com $w+v=\frac{dc}{dt}$ teríamos

$$1 = \left\langle \frac{dc}{dt}, \frac{dc}{dt} \right\rangle = \left\langle \frac{dc}{dt}, w + v \right\rangle = \left\langle \frac{dc}{dt}, w \right\rangle + \left\langle \frac{dc}{dt}, v \right\rangle = 0.$$

Consequentemente $dim(W + T_qN_2) < dim(T_qM) = n$, logo

$$dim(W \cap T_q N_2) = dim(W) + dim(T_q N_2) - dim(W + T_q N_2)$$

$$\geq n_1 + n_2 - (n-1)$$

$$\geq 1.$$

Assim existe x_0 em $W \cap T_q N_2$, com $\langle x_0, x_0 \rangle = 1$. Seja X o campo do transporte paralelo de x_0 ao longo de c. Notemos que

$$\frac{d}{dt}\left\langle X, \frac{dc}{dt} \right\rangle = \left\langle \frac{DX}{dt}, \frac{dc}{dt} \right\rangle + \left\langle X, \frac{D}{dt} \frac{dc}{dt} \right\rangle = 0,$$

 $\log o\left\langle X,\frac{dc}{dt}\right\rangle \text{ \'e constante e como }\left\langle X(0),\frac{dc}{dt}(0)\right\rangle =0, \text{ temos que } X \text{ \'e normal ao longo } de \text{ c. Notemos tamb\'em que }$

$$\frac{d}{dt}\langle X, X \rangle = 2\langle \frac{DX}{dt}, X \rangle = 0.$$

De modo que $\langle X, X \rangle$ é constante e como $\langle X(0), X(0) \rangle = \langle x_0, x_0 \rangle = 1$, disto temos que X é unitário ao longo de c. Concluímos que X é normal e unitário ao longo de c. Outra observação é que como X(0) é tangente a N_1 em p e X(a) é tangente a N_2 em q, com N_1 e N_2 totalmente geodésicas e podemos enxergar X(0) e X(a) como vetores tangentes a geodésicas de M, teremos:

$$\nabla_{\underbrace{\partial F}} \frac{\partial F}{\partial s}(0) = \nabla_X X(0) = \nabla_X X(a) = \nabla_{\underbrace{\partial F}} \frac{\partial F}{\partial s}(a) = 0.$$

Pela fórmula da segunda variação do comprimento temos

$$\frac{d^{2}L}{ds^{2}}(0) = -\int_{0}^{a} K(X, \frac{dc}{dt})dt + \left\langle \nabla_{X}X, \frac{dc}{dt} \right\rangle \Big|_{0}^{a}$$

$$= -\int_{0}^{a} K(X, \frac{dc}{dt})dt$$

$$< 0$$

Contradizendo o fato de c ser minimizante.

Daremos a seguir um exemplo onde o teorema falha caso retire a hipótese de positividade

da curvatura.

Exemplo 2.2.1 (curvatura seccional não-negativa) Tomemos como exemplo $\mathbb{S}^2 \times \mathbb{S}^2$ munido da métrica produto. Temos que a curvatura secional é não-negativa, pois identificando $T_{(p,q)}(\mathbb{S}^2 \times \mathbb{S}^2) \simeq T_p \mathbb{S}^2 \times T_q \mathbb{S}^2$ ou seja, cada vetor $v \in T_{(p,q)}(\mathbb{S}^2 \times \mathbb{S}^2)$ poderá ser visto da forma $v = (v_1, v_2)$ com $v_1 \in T_p \mathbb{S}^2$ e $v_2 \in T_q \mathbb{S}^2$. Desta forma, um vetor $v_1 \in T_p \mathbb{S}^2$ poderá ser visto como (v_1, v_2) e $v_2 \in T_q \mathbb{S}^2$ poderá ser visto como (v_1, v_2) . Calculemos a curvatura de $\mathbb{S}^2 \times \mathbb{S}^2$. Sejam $v_1 \in T_{(p,q)}(\mathbb{S}^2 \times \mathbb{S}^2)$ linearmente independente. Denotando por ∇^1 a conexão em $T_p \mathbb{S}^2$ por ∇^2 a conexão em $T_q \mathbb{S}^2$ e temos que a conexão ∇ em $T_{(p,q)}(\mathbb{S}^2 \times \mathbb{S}^2)$ se comporta da seguinte maneira

$$\nabla_u v = \nabla^1_{u_1} v_2 + \nabla^2_{u_2} v_2.$$

É evidente que se tomarmos u, v tangentes a mesma coordenada, se reduz a conexão de \mathbb{S}^2 portanto terá a mesma curvatura que \mathbb{S}^2 que é 1. No caso em que u = (u, 0) e v = (0, v), teremos

$$\nabla_u v = \nabla_u^1 0 + \nabla_0^2 v = 0,$$

De modo que a curvatura se anula.

Agora que se fixados dois pontos distintos p e q em \mathbb{S}^2 , consideremos as subvariedades $N_1 = \{p\} \times \mathbb{S}^2$ e $N_2 = \{q\} \times \mathbb{S}^2$ e pelos comentários anteriores temos $\nabla = \nabla^1$ e $\nabla = \nabla^2$ portanto N_1 e N_2 são totalmente geodésicas. De modo que são exemplos subvariedades totalmente geodésicas que claramente não se intersectam.

No próximo teorema enfraqueceremos a hipótese do teorema de Frankel fundamental sobre a curvatura e sobre a segunda forma (em Frankel pedimos que a segunda forma seja identicamente nula. A seguir pediremos apenas que seu traço se anule.), mas será necessário exigir mais sobre a dimensão das subvariedades.

Teorema 4 Em uma variedade Riemanniana completa com curvatura de Ricci positiva duas hipersuperfícies mínimas se intersectam.

Demonstração 4 Sejam N_1 , $N_2 \subset M$ hipersuperfícies mínimas e sejam $p_1 \in N_1$ e $p_2 \in N_2$ os pontos destas hipersuperfícies mais próximos um do outro, ou seja . Se $p_1 \neq p_2$ escolhemos como na demonstração do teorema de Frankel, uma geodésica unitária c:

[0,l] o M de p_1 para p_2 . Feito isso, escolhemos uma base ortonormal de campos paralelos V_1, \ldots, V_n ao longo de c com $V_n = \frac{dc}{dt}$. De modo que os pontos finais de V_1, \ldots, V_{n-1} são tangentes à hipersuperfície. Agora considere as variações F_1, \ldots, F_{n-1} com a propriedade $F_j(s,0) \in N_1, F_j(s,l) \in N_2$ para s pequeno e $\frac{\partial F_j}{\partial s}(0,t) = V_j$. Assim, somando todas as variações

$$\sum_{j=1}^{n-1} \frac{d^2 L}{ds^2}(0) = \sum_{j=1}^{n-1} \left(-\int_0^l K(V_j, \frac{dc}{dt}) + \left\langle \nabla_{\frac{\partial F_j}{\partial s}} \frac{\partial F_j}{\partial s}, \frac{dc}{dt} \right\rangle (0, t) \right) dt$$
$$= \sum_{j=1}^{n-1} -\int_0^l K(V_j, \frac{dc}{dt}) dt + \sum_{j=1}^{n-1} \left\langle \nabla_{\frac{\partial F_j}{\partial s}} \frac{\partial F_j}{\partial s}, \frac{dc}{dt} \right\rangle (0, t) \Big|_0^l$$

Agora observe que

$$\sum_{j=1}^{n-1} \left\langle \nabla_{\frac{\partial F_j}{\partial s}} \frac{\partial F_j}{\partial s}, \frac{dc}{dt} \right\rangle (0, 0),$$

$$\sum_{j=1}^{n-1} \left\langle \nabla_{\frac{\partial F_j}{\partial s}} \frac{\partial F_j}{\partial s}, \frac{dc}{dt} \right\rangle (0, l)$$

são as curvaturas de N_1 em p_1 e de N_2 e p_2 , respectivamente. Essas contribuições são nulas e obtemos o seguinte

$$\sum_{j=1}^{n-1} \frac{d^2 L}{ds^2}(0) = \sum_{j=1}^{n-1} -\int_0^l K(V_j, \frac{dc}{dt}) dt$$
$$= \sum_{j=1}^{n-1} -\int_0^l Ric(V_j, \frac{dc}{dt}) dt$$
$$< 0$$

Contradizendo novamente o fato da curva ser minimizante.

Na verdade Petersen e Wilhelm também provaram em [9, Teorema 4] que se a curvatura de Ricci é não-negativa e duas hipersuperfícies mínimas não se intersectam então elas devem ser totalmente geodésicas.

Tomando como base o exemplo que demos após o teorema de Frankel, verificaremos que $\mathbb{S}^1 \times \mathbb{S}^n$ é um exemplo onde $Ric \geq 0$ e existe mínimas que não se intersectam. Fixados p_1 e q_1 em \mathbb{S}^1 temos $N_1 = \{p_1\} \times \mathbb{S}^n$ e $N_2 = \{q_1\} \times \mathbb{S}^n$ são totalmente geodésica, portanto hipersuperfícies mínimas que não se intersectam. Verifiquemos que $Ric(v) \geq 0$. Fixado

 $u\in T_p(\mathbb{S}^1\times\mathbb{S}^n)$ unitário, tomemos $\{u,e_1,\dots,e_n\}$ base ortonormal do espaço tangente $T_p(\mathbb{S}^1\times\mathbb{S}^n)$ assim,

$$Ric(u) = \sum_{i=1}^{n} K(u, e_i) = n.$$

3 O TEOREMA DE HOFFMAN-MEEKS

3.1 Princípio da Tangência

Grosso modo, o princípio da tangência nos diz que se duas hipersuperfícies mínimas se tangenciam num ponto de forma que uma está localmente acima de outra (como gráfico, por exemplo) então coincidem. Dito de outro modo, toda tangência de duas hipersuperfícies mínimas (distintas) tem interseção num conjunto maior que um ponto.

Este princípio segue de um resultado geral para equações diferenciais elípticas conforme definimos a seguir.

Uma expressão do tipo

$$L(u) = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}} + cu,$$

onde $a_{ij}, b_i, c: U \subset \mathbb{R}^n \to \mathbb{R}, i, j = 1, \dots, n$, são funções definidas em um subconjunto aberto U de \mathbb{R}^n , será chamado de *operador diferencial de ordem dois*.

Quando $A(x)=(a_{ij}(x))$ for simétrica e positiva definida para todo ponto $x\in U,$ isto é,

$$\sum_{i,j=1}^{n} a_{ij} \lambda_i \lambda_j > 0,$$

para todo $x \in U$ e todo $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n - \{0\}$. A expressão Lu = 0 é chamada uma equação elíptica linear de segunda ordem.

Proposição 2 Sejam $u: U \subset \mathbb{R}^n \to \mathbb{R}$ uma função duas vezes diferenciável e $c \leq 0$. Se L(u) > 0 em U, então u não possui máximo local não negativo em U.

Demonstração 5 Ver referência [5].

A seguir apresentaremos resultados que nos auxiliarão a enunciar o Princípio da Tangência.

Definição 6 Dada a função

$$\phi(u) = \phi\left(r_{(1,1)}, \dots, r_{(1,n-1)}, \dots, r_{(i,i)}, \dots, r_{(i,n-1)}, \dots, r_{(n-1,n-1)}, p_1, \dots, p_n, u, x_1, \dots, x_n\right)$$

 $de \ k = \tfrac{(n-1)n}{2} + 2n - 1 \ variáveis, \ n \geq 3, \ definida \ em \ um \ domínio \ de \ \mathbb{R}^k. \ Se \ \phi \ possui$

derivadas parciais de primeira ordem contínuas, dizemos que $\phi(u) = 0$ é uma equação diferencial parcial de segunda ordem na função "incognita", $u = u(x_1, \dots, x_n)$, onde $p_i = \frac{\partial u}{\partial x_i} e \ r_{(i,j)} = \frac{\partial^2 u}{\partial x_i \partial x_j}$, para todo $i, j = 1, \dots, n-1, i \leq j$.

Considere a forma quadrática

$$Q(\lambda) = \langle A\lambda, \lambda \rangle,$$

onde $\lambda = (\lambda_1,...\lambda_{n-1}) \in \mathbb{R}^{n-1}$ e A é a matriz cujos elementos são

$$a_{ij} = a_{ji} = \frac{1}{2} \frac{\partial \phi}{\partial r_{ij}},$$

se $i \neq j$ e

$$a_{ii} = \frac{\partial \phi}{\partial r_{ii}}$$

se $i \leq j$.

Diremos que a função ϕ é *elíptica* em um domínio U de \mathbb{R}^k se a forma quadrática Q for positiva definida em todo ponto de U.

Teorema 5 (Princípio do máximo geral) Sejam $z_1, z_2 : U \to \mathbb{R}$ funções diferenciáveis definidas em um conjunto U, aberto e conexo de \mathbb{R}^n , ou do semiespaço $\{(x_1, \ldots, x_n); x_n \ge 0\}$, tal que $0 \in U$. Se z_1 e z_2 são soluções de uma mesma equação parcial elíptica $\phi = 0$, $z_1(0) = z_2(0), z_1 \le z_2$ em U, e além disto $\frac{\partial z_1}{\partial x_n}(0) = \frac{\partial z_2}{\partial x_n}(0)$ então $z_1 = z_2$ em U.

Sabemos que uma hipersuperfície M é dada localmente como gráfico de uma função suave, isto é, para cada ponto $p \in M$ existe $U \subset \mathbb{R}^{n-1}$ uma função suave

$$f:U\to\mathbb{R}$$

tal que $Graf(f) = \{(x, f(x)); x \in \mathbb{R}^{n-1}\}$ é uma vizinhança de p em M.

Lema 1 Se M é uma hipersuperfície em \mathbb{R}^n , $n \geq 3$, com curvatura média constante H_0 , então a função f acima é solução de uma equação diferencial parcial elíptica não-linear, que envolve apenas H_0 , f e as derivadas de f até a segunda ordem.

Demonstração 6 Ver referência [5, Lema 2.1].

O princípio do máximo geral se aplica para um princípio da tangência bem geométrico que enunciaremos a seguir. Para isto precisamos introduzir algumas notações. Sejam M_1 e

 M_2 duas hipersuperfícies de M que são tangentes em $p \in M_1 \cap M_2$, ou seja $T_p M_1 = T_p M_2$. Sejam $U \subset T_p M_1$ uma vizinhança da origem e $f_1, f_2 : U \to \mathbb{R}$ funções diferenciáveis cujos gráficos são vizinhanças de M_1 e M_2 , respectivamente. Se $f_1 \leq f_2$ em U, dizemos que M_2 está acima de M_1 , em U.

Teorema 6 (Princípio da tangência para hipersuperfícies com curvatura média constant Sejam M_1 e M_2 hipersuperfícies em \mathbb{R}^n com curvátura média H_0 constante, e $p \in M_1 \cap M_2$ um ponto de tangência. Se M_1 e M_2 possuem a mesma orientação em p, e M_2 está acima de M_1 em uma vizinhança conexa, V, de p, então M_1 e M_2 coincidem em V.

Demonstração 7 Basta notar que se M_1 , e M_2 são localmente o gráfico de f_1 e f_2 , respectivamente, o Lema 1 nos diz que f_1 e f_2 satisfazem a mesma equação diferencial parcial elíptica. Como M_2 está acima de M_1 temos que $f_1 \leq f_2$ em uma vizinhança U. Assim, pelo Princípio do Máximo temos que $f_1 = f_2$ e portanto $M_1 = M_2$.

O caso particular em que temos a variedade ambiente como o \mathbb{R}^3 , M_1 e M_2 superfícies mínimas, ou seja, $H_0=0$ é o caso que mais nos interessa e é o que usaremos na próxima seção.

Corolário 3.1.1 (Princípio da tangência para superfícies mínimas) Sejam M_1 e M_2 superfícies mínimas em \mathbb{R}^3 e $p \in M_1 \cap M_2$ um ponto de tangência. Se M_2 está em um lado de M_1 em uma vizinhança conexa de V de p, então M_1 e M_2 coincidem em V.

3.2 O Teorema de Hoffman-Meeks

Todos os comentários até aqui são válidos para hipersuperfícies em \mathbb{R}^{n+1} . Mas nosso principal objetivo, neste capítulo, é demonstrar o Teorema de Hoffman-Meeks sobre superfícies mínimas em \mathbb{R}^3 , estudadas em um curso clássico de Geometria Diferencial.

Enunciaremos a seguir o Princípio da continuidade para hipersuperfícies mínimas.

Lema 2 (Princípio da Continuidade) Se M_1 e M_2 são hipersuperfícies mínimas que coincidem em uma vizinhança, então $M_1 = M_2$.

Teorema 7 (Hoffman-Meeks) Uma superfície mínima em \mathbb{R}^3 conexa, própria, não-planar e possivelmente ramificada, não está contida em um semiespaço.

Demonstração 8 Suponhamos, por absurdo, que o teorema é falso. Ou seja, que existe $M \subset \mathbb{R}^3$ superfície mínima, conexa, própria, não planar e possivelmente ramificada, de modo que M esteja totalmente contida em um semiespaço.

Sem perda de generalidade, consideraremos que a superfície M está contida no semiespaço $H=\{(x,y,z)\in\mathbb{R}^3;z\geq 0\}$, mas que M não está contida em nenhum semiespaço que seja subconjunto próprio de H (isto é, a fronteira do semiespaço H é o único plano abaixo de M, o que significa que se $P=\partial H=\{(x,y,z)\in\mathbb{R}^3;z=0\}$), M é assintótica ao plano P, pois se M intercepta um plano tangencialmente, pelo Princípio do Máximo para Superfícies, M coincidiria com este plano, mas por hipótese, M é não planar.

Considerando P temos $M \cap P = \emptyset$, pois como M está acima de P se existisse $p \in M \cap P$, pelo Princípio do Máximo, teríamos M = P, mas por hipótese M não é plana. Mas, para $\epsilon > 0$ suficientemente pequeno, conseguimos uma translação para baixo de M, digamos M_{ϵ} , tal que $M_{\epsilon} \cap P \neq \emptyset$.

Considere $C=C_1$ o semicatenóide $\{(x,y,z)\in\mathbb{R}^3; x^2+y^2=\cosh^2(z)|z<0\}$. Escolhendo $\epsilon>0$ pequeno o suficiente, podemos assegurar que $M_\epsilon\cap C_1=\emptyset$ e, sendo D_1 o disco unitário em P, como z<0 implica que $\cosh(z)>1$ temos que $M_\epsilon\cap D_1=\emptyset$.

Mais especificamente, seja d>0 a distância de M ao disco $D_R\subset P$, de raio $R=\cosh(1)>1$. Do lado de fora do cilindro D_R , C_1 está abaixo do plano z=-1. Escolheremos então $\epsilon<\frac{1}{2}min(1,d)$ e pequeno suficiente para que $M_\epsilon\cap P\neq\emptyset$.

Seja C_t a contração homotética de C_1 por t, para 0 < t < 1. Como na figura abaixo.

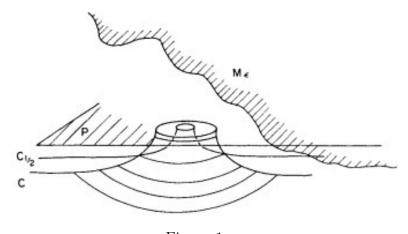


Figura 1

Observe que C_t converge suavemente e distante de $\vec{0}$ para $P - \vec{0}$. Do que foi visto

anteriormente, podemos concluir que:

- 1. $M_{\epsilon} \cap C_t$ encontra-se for ado cilindro sobre D_1 para todo t;
- 2. $M_{\epsilon} \cap C_t \neq \emptyset$ para t suficientemente pequeno;
- 3. $M_{\epsilon} \cap C_t = \emptyset$ para t próximo de 1.

Agora seja $S = \{t \in (0,1); M_{\epsilon} \cap C_t \neq \emptyset\}$ e $T = \sup S$. Claramente T < 1. Afirmamos que $T \in S$, isto é, $C_T \cap S \neq \emptyset$. De fato, podemos encontrar uma sequência crescente $t_n \longrightarrow T$ em S, com $t_0 \geq \frac{T}{2}$, tal que existe um ponto $p_n \in C_1$ onde $t_n p_n \in C_{t_n} \cap M_{\epsilon}$. Se $p_n = (x_n, y_n, z_n)$, devemos ter que $t_n z_n \geq -\epsilon$, o que implica que $z_n \geq \frac{-\epsilon}{t_n} \geq \frac{-\epsilon}{T}$. Isto é, $\{p_n\}$ se encontra em um subconjunto limitado $\{(x_1, x_2, x_3) \in C_1 | x_3 \geq -\frac{\epsilon}{T}\}$ e portanto deve possuir uma subsequência convergente.

Seja $\{p_j\}$ esta subsequência. Como o catenoide é completo, temos que $p_j \longrightarrow p_0 \in C_1$, então $t_j p_j \in C_{t_j} \cap M_{\epsilon}$. Por continuidade, $T p_0 \in C_T \cap M_{\epsilon}$. Assim, $T \in S$.

Como a fronteira de C_T se encontra dentro do disco $D_1 \subset P$, e $D_1 \cap M_{\epsilon} = \emptyset$, então Tp_0 tem que ser um ponto interior de C_T . Mais ainda, dos fatos:

1.
$$T < 1$$
;

2.
$$\forall t > T \Rightarrow C_t \cap M_{\epsilon} = \emptyset$$
,

temos que C_T encontra M_{ϵ} em Tp_0 , mas está localmente situado de um lado de M_{ϵ} perto de Tp_0 . Pelo Princípio do Máximo para mínimas, C_T coincide com M_{ϵ} próximo de Tp_0 e portanto, M_{ϵ} tem que ser um catenoide. No entanto, o catenoide não pode estar inteiramente contido em um semiespaço. O que nos dá a contradição desejada.

Vale notar que para n > 3 temos que o teorema acima não é verdadeiro, pois temos o catenoide (n-1)—dimensional em \mathbb{R}^n como contra-exemplo, é uma hipersuperfície mínima, completa de rotação, mas que está contido entre dois hiperplanos paralelos.

Enunciaremos a seguir dois resultados, que pode ser encontrado em [7, Corolário 1], que será fundamental na demonstração do Teorema do Semiespaço (versão forte).

Teorema 8 Seja M_1 e M_2 superfícies mínimas, completas, próprias e imersas no espaço tridimensional euclidiano \mathbb{R}^3 , então acontece um dos casos:

1. ou M_1 ou M_2 é um plano;

- 2. Existe um plano P em \mathbb{R}^3 disjunto de M_1 e M_2 tal que M_1 e M_2 estão em componentes distintas de $\mathbb{R}^3 P$.
- 3. M_1 e M_2 se intersectam não trivialmente.

Teorema 9 (Versão forte do Teorema de Hoffman-Meeks) Duas superfícies mínimas em \mathbb{R}^3 , próprias, possivelmente ramificadas e conexas devem se intersectar, a menos que sejam planos paralelos.

Demonstração 9 Suponhamos que existam superfícies M_1 e M_2 , com as condições do enunciado, não se intersectando. Do corolário acima, temos que ou uma delas é um plano, deixando a outra em um semiespaço, ou existe um plano entre elas, colocando cada uma delas num semiespaço distinto. Do Teorema de Hoffman-Meeks, vemos que isto só é possível se ambas forem planos e, como não se intersectam, estes planos devem ser paralelos.

Em [6] Jorge e Xavier provaram o seguinte resultado sobre existência de mínimas limitadas.

Teorema 10 Existem superfícies mínimas, completas, não planar, que estão totalmente contidas numa faixa.

4 SELF-SHRINKERS

Denotando por A_p a segunda forma fundamental de uma hipersuperfície Σ no ponto p, onde sabemos que $A_p(v) = -dN_p(v)$. E sendo H a curvatura média de Σ , dada por $H = \frac{tr(A)}{n}$. Podemos definir também o vetor curvatura média como

$$\vec{H} = -H \cdot \vec{N}$$

Note que a definição é bem colocada, isto é, o vetor curvatura média não depende da escolha da orientação, pois trocando a orientação mudamos o sinal do vetor normal e consequentemente trocamos o sinal da curvatura média, mantendo assim o mesmo vetor curvatura média.

Exemplo 4.0.1 Seja $\mathbb{S}^n(R)$ a esfera de raio R em \mathbb{R}^{n+1} , sabemos que para todo $p \in \mathbb{S}^n$ temos $N(p) = \frac{1}{R} \cdot p$, de modo que

$$A_p(v) = -d(\frac{1}{R}I)_p(v) = -\frac{1}{R}I(v),$$

assim $H=-\frac{n}{R}$ de modo que o vetor curvatura média da esfera de raio R é dado por

$$\vec{H}(p) = H \cdot \vec{N}(p) = -\frac{n}{R} \left(\frac{1}{R} \cdot p \right) = -\frac{n}{R^2} \cdot p.$$

Definição 7 Diremos que $\Sigma \subset \mathbb{R}^{n+1}$ é uma hipersuperfície self-shrinker quando satisfaz a sequinte equação

$$H = -\frac{1}{2}\langle x, N \rangle,$$

onde x é o vetor posição e N o vetor unitário normal a Σ em x.

Em uma variedade Riemanniana temos uma maneira de associar uma unidade de volume, isto é, $dv_g = dv$. Mais geralmente, nós consideraremos espaços Riemannianos mensuráveis, ou seja, uma tripla (M, g, m), onde m é uma medida suave em M. E usando o teorema de Radon-Nikodym consideraremos a tripla (M, g, ϕ) , onde $\phi \in C^{\infty}(M)$ é uma função suave tal que $dm = e^{\phi}dv$. Chamaremos (M, g, ϕ) de uma $variedade \ com \ densidade \ \phi$.

Aqui generalizaremos o conceito de curvatura de uma hipersuperfície $\Sigma \subset (M, g, \phi)$,

definindo a curvatura média ponderada. por

$$H_{\phi} = H - g(N, \nabla_{\phi})$$

Definição 8 Seja $\Sigma \subset (M, g, \phi)$ uma hipersuperfície orientável. Diremos que Σ é ϕ -minima se e somente se a curvatura média ponderada é nula, ou seja $H_{\phi}(\Sigma) = 0$.

Deste modo temos que uma hipersuperfície self-shrinker é uma hipersuperfície ϕ -minima em $(\mathbb{R}^{n+1}, \langle, \rangle, \phi)$, onde $\phi = -\frac{|x|^2}{4}$. Denotaremos $(\mathbb{R}^{n+1}, \langle, \rangle, \phi)$ por \mathbb{R}^{n+1}_{ϕ} .

Definição 9 Diremos que $\Sigma \subset \mathbb{R}^{n+1}$ é uma λ -hipersuperfície em \mathbb{R}^{n+1} se satisfaz a equação

$$H + \frac{1}{2}\langle N, x \rangle = \lambda$$

Note que uma λ -hipersuperfície tem curvatura ponderada constante $H_{\phi} = \lambda$.

4.1 Exemplos

Nesta seção nós apresentaremos algumas propriedades importantes de hipersuperfícies em \mathbb{R}^{n+1}_ϕ que usaremos mais tarde. Notando que

$$H_{\phi} = H + \frac{1}{2} \langle x, N \rangle$$

E como já observamos uma ϕ -mínima em \mathbb{R}^{n+1}_{ϕ} corresponde a uma hipersuperfície self-shrinker em $(\mathbb{R}^{n+1}, \langle, \rangle)$.

4.1.1 Esferas

Como já verificamos no início temos $H=-\frac{n}{R}$ de modo que

$$H_{\phi} = H + \frac{1}{2}\langle x, N \rangle = -\frac{n}{R} + \frac{1}{2}\langle x, \frac{1}{R}x \rangle = \frac{R}{2} - \frac{n}{R}$$

Assim,

- $\mathbb{S}^n(R)$ tem curvatura ponderada constante $H_\phi = -\frac{n}{R} + \frac{R}{2} > 0$ para $R > \sqrt{2n}$
- $\mathbb{S}^n(\sqrt{2n})$ é self-shrinker.
- $\mathbb{S}^n(R)$ tem curvatura ponderada constante $H_\phi = -\frac{n}{R} + \frac{R}{2} < 0$ para $R < \sqrt{2n}$.

4.1.1.1 Hiperplanos

Seja P_t , $t \in \mathbb{R}$, o hiperplano dado por

$$P_t = \{x_{n+1} = t\}$$

e consideremos o vetor normal orientado para cima $N_t = e_{n+1}$. Como N_t é constante é imediato que a segunda forma é nula, portanto teremos H = 0. Agora sabemos que um vetor x em P_t pode ser escrito como $x = X + te_{n+1}$, onde X é ortogonal a e_{n+1} . Deste modo

$$\langle x, N_t \rangle = \langle X + t e_{n+1}, e_{n+1} \rangle = \langle X, e_{n+1} \rangle + \langle t e_{n+1}, e_{n+1} \rangle = t,$$

para qualquer $t \in \mathbb{R}$. Desta forma

- P_t tem curvatura ponderada constante $H_\phi = \frac{t}{2} > 0$ para t > 0.
- P_0 é auto-contraída.
- P_t tem curvatura ponderada constante $H_{\phi} = \frac{t}{2} < 0$ para t < 0.

4.1.1.2 Cilindros

Consideremos o cilindro centrado na origem dado por

$$C_R^k = \mathbb{S}^k(R) \times \mathbb{R}^{n-k}, 1 \le k \le n.$$

Notemos que $H(C_R^k) = \frac{k}{R}$, e considerando $N_{k,R}$ o normal que ponta para fora temos que $\langle x, N_{k,R} \rangle = R$. Portanto

$$H_{\phi}(C_R^k) = \frac{R}{2} - \frac{k}{R}.$$

Disto tiramos que

- $H_{\phi}(C_R^k)$ tem curvatura ponderada constante $H_{\phi} = \frac{R}{2} \frac{k}{R}$ para $R > \sqrt{2k}$.
- $H_{\phi}(C_{\sqrt{k}}^k)$ é uma self-shrinker.
- $H_{\phi}(C_R^k)$ tem curvatura ponderada constante $H_{\phi} = \frac{R}{2} \frac{k}{R} < 0$ para $R < \sqrt{2k}$.

Agora observemos que na demonstração do princípio da tangência para mínimas o argumento é baseado em hipóteses das derivadas até a segunda ordem, e como a expressão

$$H = c\langle x, N \rangle,$$

só relacionará as derivadas de primeira ordem podemos enunciar o seguinte princípio do máximo para superfícies self-shrinkers.

Teorema 11 (Princípio do máximo para hipersuperfícies self-shrinkers) Sejam M_1 e M_2 hipersuperfícies self-shrinkers em \mathbb{R}^{n+1} e $p \in M_1 \cap M_2$ um ponto de tangência, Se M_2 está em um lado de M_1 em uma vizinhança conexa de V de p, então M_1 e M_2 coincidem em V.

Agora cabe notar o seguinte resultado.

Proposição 3 A única self-shrinker limitada por uma esfera $e S^n(\sqrt{2n})$.

Demonstração 10 Note que se Σ está contida em $\mathbb{B}^{n+1}(R) = \{x \in \mathbb{R}^{n+1}; |x| \leq R\}$ temos que Σ é compacta. Em particular, existe $p \in \Sigma$ tal que

$$d(p,\mathbb{S}^n(R))=dist(\Sigma,\mathbb{S}^n(R)).$$

Portanto, podemos escolher $r \leq R$ tal que Σ e $\mathbb{S}^n(r)$ são tangentes em p. Como a curvatura média ponderada de $\mathbb{S}^n(r)$ é dada por

$$H_{\phi} = \frac{r}{2} - \frac{n}{r} \le 0,$$

o princípio da tangência nos diz que $\Sigma = \mathbb{S}^n(r)$ e pelos comentários se $\mathbb{S}^n(r)$ é uma self-shrinker então $r = \sqrt{2n}$, chegando que $\Sigma = \mathbb{S}^n(\sqrt{2n})$.

4.1.2 Semicatenoides

Dada uma função $u_{\theta}: [0, +\infty) \to \mathbb{R}^+$ satisfazendo

•
$$u_{\theta}(t) > \theta t \in u_{\theta}(0) < \sqrt{2(n-1)},$$

•
$$\frac{u_{\theta}(t)}{t} \to \theta \in u'_{\theta}(t) \to \theta$$
 quando $t \to \infty$,

• u_{θ} é estritamente convexa e $0 < u_{\theta} < \theta$.

Consideremos

$$\psi_{\theta}: [0, +\infty) \times \mathbb{S}^{n-1} \to \mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$$

$$(t, w) \to (u_{\theta}(t)w, -t)$$

Então consideremos o semicatenoide como $C_{\theta} = \psi_{\theta}([0, +\infty) \times \mathbb{S}^{n-1})$ Observemos que

$$H_{\phi}(C_{\theta}) = 0.$$

Vale notar que C_{θ} está na região limitada pelo plano P_0 e o semi-cilindro $C_{\sqrt{2(n-1)}}^{n-1} \cap \{x_{n+1} = 0\}$. De forma que quando $\theta \to 0$ temos que $C_{\theta} \to C_{\sqrt{2(n-1)}}^{n-1} \cap \{x_{n+1} = 0\}$ e quanto $\theta \to \infty$ teremos que $C_{\theta} \to P_0$.

4.2 O Teorema do Semi-espaço para self-shrinkers

Demonstraremos a seguir um resultado que foi demonstrado em [1], e que no contexto das superfícies self-shrinkers, faz um paralelo ao Teorema de Hoffman-Meeks para superfícies mínimas.

Teorema 12 (Cavalcante, Espinar) Seja P um hiperplano passando pela origem. A única hipersuperfície self-shrinker propriamente imersa contida em um dos semiespaços fechados determinados por P é $\Sigma = P$.

Demonstração 11 Demonstraremos por contradição. Assumindo que $\Sigma \subset \mathbb{R}^{n+1}_{\phi}$ é uma hipersuperfície self-shrinker propriamente imersa contida em um semiespaço determinado por $P_0 = \{x = (x_1, \dots, x_{n+1}) | x_{n+1} = 0\}$ e Σ não é P_0 . Sem perca de generalidade, assumiremos que $\Sigma \subset \{x_{n+1} \geq 0\}$.

Notemos que a função $h: \Sigma \to \mathbb{R}$, dada por $h(p) = \langle p, e_{n+1} \rangle$, não pode ter um minimo. Caso contrário, existiria um ponto p_0 tal que $h_0 = h(p_0) \leq h(p)$. Implicando que Σ e P_{h_0} tem um ponto de contato em p_0 . Σ está abaixo de P_{h_0} (com respeito a orientação para cima) e $H_{\phi}(\Sigma) < H_{\phi}(P_{h_0})$. Contradizendo o Princípio do Máximo.

Portanto, assumiremos que Σ é assintótica a algum hiperplano P_t , $t \geq 0$.

Como Σ é própria, existe um $\epsilon > 0$ tal que $D(\sqrt{2(n-1)}) \times [0, t+\epsilon] \cup \Sigma = \emptyset$, onde $D(\sqrt{2(n-1)}) \subset P_0$ é a bola euclidiana (n-1)-dimensional centrada na origem e

de raio $\sqrt{2(n-1)}$.

Agora transladaremos para cima a família de semicatenoides C_{θ} . Denotaremos

$$C_{\theta,s} = C_{\theta} + se_{n+1}$$

para $s \ge t$. Sendo $N_{\theta,s}$ o normal ao logo de $C_{\theta,s}$ satisfazendo que $\langle N_{\theta,s}, e_{n+1} \rangle > 0$ e que

$$H_{\phi}(C_{\theta,s}) = \frac{su'_{\theta}}{(1 + (u'_{\theta})^2)^{\frac{1}{2}}} > 0,$$

seja positiva ao longo de $C_{\theta,s}$.

Assim, tomando $s \in (t, t + \epsilon)$, então $\partial C_{\theta,s}$ não toca Σ para todo $\theta \in (0, +\infty)$. Note que $C_{\theta,s} \to C_{\sqrt{2(n-1)}}^{n-1} \cap \{x^{n+1} \leq s\}$ quando $\theta \to 0$ e $C_{\theta,s} \to P_s$ quando $\theta \to +\infty$. Notemos também que $C_{\theta,s}$ não é assintótico a todo hiperplano P_t , $t \leq s$. De fato, $C_{\theta,s}$ é assintótico ao cone para todo $\theta > 0$.

Portanto, como Σ se aproxima de P_t , existe θ_0 tal que $C_{\theta,s}$ tem um primeiro ponto de contato finito com Σ com θ decrescendo para 0. Claramente, ambos normais para cima de Σ sobre $C_{\theta,s}$, mas $H_{\phi}(C_{\theta,s}) > H_{\phi}(\Sigma) = 0$.

REFERÊNCIAS

- [1] M. Cavalcante and J. Espinar. Halfspace type theorems for self-shrinkers. *Bulletin* of the London Mathematical Society, 48, 12 2014.
- [2] M. Dajczer, M. Antonucci, G. Oliveira, P. Lima-Filho, and R. Tojeiro. Submanifolds and isometric immersions, publish or perish. *Inc.*, *Houston*, 1990.
- [3] M. P. do Carmo. *Geometria riemanniana*. Instituto de Matemática Pura e Aplicada, 1988.
- [4] T. Frankel et al. Manifolds with positive curvature. *Pacific Journal of Mathematics*, 11(1):165–174, 1961.
- [5] K. R. L. Frensel. O princípio da tangência e aplicações. Dissertação de Mestrado, 1983.
- [6] L. Jorge and F. Xavier. A complete minimal surface in r 3 between two parallel planes. *Annals of Mathematics*, 112:203–206, 07 1980.
- [7] W. Meeks III, L. Simon, and S.-T. Yau. Embedded minimal surfaces, exotic spheres, and manifolds with positive ricci curvature. *Annals of Mathematics*, pages 621–659, 1982.
- [8] P. Petersen, S. Axler, and K. Ribet. *Riemannian geometry*, volume 171. Springer, 2006.
- [9] P. Petersen and F. Wilhelm. On frankel's theorem. Canadian Mathematical Bulletin, 46(1):130–139, 2003.
- [10] J. L. Synge. The first and second variations of the length-integral in riemannian space. *Proceedings of the London Mathematical Society*, 2(1):247–264, 1926.