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Abstract. In this article, under mild constraints on the sectional cur-
vature, we exploit a divergence formula for symmetric endomorphisms
to deduce a general Poincaré type inequality. We apply such inequality
to higher-order mean curvature of hypersurfaces of space forms and Ein-
stein manifolds, to obtain several isoperimetric inequalities, as well as
rigidity results for complete r-minimal hypersurfaces satisfying a suit-
able decay of the second fundamental form at infinity. Furthermore,
using these techniques, we prove flatness and non-existence results for
self-similar solutions to a large class of fully nonlinear curvature flows.

1. Introduction

In the last decades, many mathematicians investigated the existence of
nice embeddings between spaces of functions and estimates providing regu-
larity of solutions to some PDE’s. For a domain Ω in Rn, a classical esti-
mate that allow us to obtain interesting information on the space W 1,p

0 (Ω),
1 ≤ p < n, is the Poincaré inequality. The reader can learn more about the
subject in [34], [46], [15], [27], [47] and references therein.

Various consequences of Poincaré type inequalities have been obtained
in the literature. For instance, estimates of the volume growth, spectral
and regularity of solutions to elliptic equations, estimates of the number
of harmonic L2 1-forms, of the number of ends of a manifold, and others.
We point out that some rigidity results are achieved from these inequalities
under additional constraints on the curvatures, see [20] and [49].

Results. In this work, we establish a general Poincaré type inequality on
submanifolds of suitable Riemannian ambient spaces. Using such estimate
and additional mild conditions we obtain rigidity results for hypersurfaces
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of space forms and of suitable Einstein manifolds, as we briefly describe in
the following.

(i) We prove isoperimetric inequalities for domains of hypersurfaces of
Rm+1; and

(ii) that (r + 1)-minimal hypersurfaces of the space forms, satisfying
a suitable decay on the integral of the r-mean curvature over the
annuli of geodesic balls at infinity, are foliated by totally geodesic
submanifolds, becoming cylinders or totally geodesic hypersurfaces
if their Ricci curvature is bounded from bellow.

(iii) We also prove that hypersurfaces with a determined constant scalar
curvature in Einstein manifolds are totally geodesic, provided the in-
tegral of their mean curvature over geodesic spheres satisfy a suitable
decay; and

(iv) a rigidity result for the hyperplane as the only homothetic self-similar
solutions to a wide class of fully nonlinear curvature flows.

Organization of the paper. In section 2 we present the basic computa-
tions of this work. In section 3 we state our main general inequality and
apply it for the setting of higher-order mean curvature and to derive isoperi-
metric inequalities. In section 4 we obtain the rigidity results in items (ii)
and (iii) above as a consequence of our Poincaré type inequality. We conclude
the paper by proving, in section 5, rigidity results for self-similar solutions
to some fully nonlinear curvature flows.

2. Notations and Preliminaries

LetM be a hypersurface of a Riemannian (m+1)-manifoldMm+1
. Denote

by ∇ and ∇ the connections of M and Mm+1
, respectively. Given X : M →

TM
m+1 a vector field, write X = X> + X⊥, where X> ∈ TM and X⊥ ∈

TM⊥. Denoting by 〈·, ·〉 the metric of M and by B(Y,Z) = ∇Y Z − ∇Y Z
the second fundamental form of M, where Y, Z ∈ TM are vector fields, we
have

〈∇YX,Z〉 = 〈∇YX> +∇YX⊥, Z〉

= 〈∇YX>, Z〉 − 〈X⊥, B(Y,Z)〉.

If η is a normal vector field, then X⊥ = 〈X, η〉η. It implies

(1)
〈∇YX,Z〉 = 〈∇YX>, Z〉 − 〈X, η〉〈η,B(Y, Z)〉

= 〈∇YX>, Z〉 − 〈X, η〉〈A(Y ), Z〉,
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where A : TM → TM is the Weingarten operator in direction η which is
given by

(2) 〈A(V ),W 〉 = 〈η,B(V,W )〉, V,W ∈ TM.

We first state a general divergence formula which will be useful for us
in the next section. A similar formula was obtained by the first and third
named authors in [2].

Proposition 2.1. IfM is a hypersurface of a (m+1)-dimensional Riemann-
ian manifold Mm+1

, m ≥ 2, and X : M → TM is a vector field, then, for
every symmetric linear operator T : TM → TM and every smooth function
f : M → R, it holds

(3)
divf (T (X>)) = −〈X>, T (∇f)〉+ tr

(
E 7→ T

((
∇EX

)>))
+ 〈X, η〉 tr(AT ) + (div T )(X>).

Here, divf (Y ) = ef div(e−fY ) is the weighted divergence, (div T )(Y ) =

tr(E 7→ (∇ET )(Y )), and tr denotes the trace of the operator.

Proof. Let {e1, e2, . . . , em} be an orthonormal frame in TM and X ∈ TM.

First, since T is self-adjoint, we have
(4)

tr
(
E 7→ T

((
∇EX

)>))
=

m∑
i=1

〈
T
((
∇eiX

)>)
, ei

〉
=

m∑
i=1

〈∇eiX,T (ei)〉.

By using (1), p.2, and the self-adjointness of A, we obtain

m∑
i=1

〈∇eiX,T (ei)〉 =

m∑
i=1

〈∇eiX>, T (ei)〉 −

(
m∑
i=1

〈A(ei), T (ei)〉

)
〈X, η〉

=

m∑
i=1

〈∇eiX>, T (ei)〉 −

(
m∑
i=1

〈(AT )(ei), ei〉

)
〈X, η〉

=
m∑
i=1

〈∇eiX>, T (ei)〉 − tr(AT )〈X, η〉.

Thus,

m∑
i=1

〈∇eiX>, T (ei)〉 = tr
(
E 7→ T

((
∇EX

)>))
+ tr(AT )〈X, η〉.
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On the other hand, the self-adjointness of T implies

m∑
i=1

〈∇eiX>, T (ei)〉 =

m∑
i=1

〈∇eiX> +B(ei, X
>), T (ei)〉

=
m∑
i=1

〈T (∇eiX>), ei〉

=
m∑
i=1

〈∇ei(T (X>)), ei〉 −
m∑
i=1

〈(∇eiT )(X>), ei〉

= div(T (X>))− tr(E 7→ (∇ET )(X>))

= div(T (X>))− (div T )(X>).

Therefore,

div(T (X>)) = tr
(
E 7→ T

((
∇EX

)>))
+ (div T )(X>) + tr(AT )〈X, η〉.

Since

divf (Y ) = ef div(e−fY ) = div(Y )− 〈∇f, Y 〉, Y ∈ TM,

we conclude the result. �

In the next lemma we will estimate tr
(
E 7→ T

((
∇EX

)>)) for a special

vector field X, in terms of trT, the distance function ofM and the bounds of
the sectional curvatures of M. This result is essentially in [14], Proposition
2.2, p.109, but by the difference of notations between the two articles and
by the sake of completeness, we include a (different) proof here.

Lemma 2.1. Let Mm+1
, m ≥ 2, be a Riemannian (m + 1)-dimensional

manifold whose sectional curvatures satisfy

SectM (V ,∇ρ) ≤ −G
′′(ρ)

G(ρ)
, ∀ V ∈ TM, V ⊥ ∇ρ,

for a class C2 nondecreasing function G : [0, b) → R, which is positive on
(0, b) for some b > 0, and ρ(x) = ρ(x0, x) is the geodesic distance of Mm+1

starting at a point x0 ∈ M
m+1

. Let M be a hypersurface of Mm+1 and
T : TM → TM be a nonnegative symmetric linear operator. If x ∈ M

satisfies ρ(x) < i(M,x0), where i(M,x0) is the injectivity radius of Mm+1

at x0, then the vector field X = G(ρ)∇ρ satisfies

(5) tr
(
E 7→ T

((
∇EX

)>))
(x) ≥ G′(ρ(x))(trT )(x).
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Proof. Let {e1, e2, . . . , em} be an orthonormal basis of TxM composed by
eigenvectors of T in x ∈M, i.e.,

T (ei(x)) = θi(x)ei(x), i = 1, 2, . . . ,m.

Since we are assuming that ρ(x) < i(M,x0), the function ρ is differentiable.
Thus

tr
(
E 7−→ T

((
∇EX

)>))
=

m∑
i=1

〈∇eiX,T (ei)〉 =

m∑
i=1

θi〈∇eiX, ei〉

=
m∑
i=1

θi〈∇ei
(
G(ρ)∇ρ

)
, ei〉

=
m∑
i=1

θi
[
G′(ρ)〈∇ρ, ei〉2 +G(ρ) HessM ρ(ei, ei)

]
.

By using the hypothesis and the hessian comparison theorem (see Theorem
2.3, p. 29 of [54]), we have

HessM ρ(ei, ei) ≥
G′(ρ)

G(ρ)
[〈ei, ei〉 − 〈∇ρ, ei〉2].

This gives

tr
(
E 7→ T

((
∇EX

)>)) ≥ G′(ρ)
m∑
i=1

θi〈ei, ei〉 = G′(ρ)
m∑
i=1

〈Tei, ei〉

= G′(ρ)(trT ).

�

Remark 1. Notice that, in M
m+1

= [0, b) × Sm, with the metric 〈·, ·〉M =

dt2 +G(t)2dω2, where dω2 is the metric of Sm, the inequality in the Lemma
2.1 becomes an equality and we do not need to assume that T is nonnega-
tive definite, i.e., for hypersurfaces of Mm+1 and for every symmetric linear
operator T : TM → TM we have

tr
(
E 7→ T

((
∇EX

)>))
= G′(ρ)(trT ).

3. Poincaré type inequality

In the next results, we denote by BR(x0) the extrinsic ball of Mm+1 with
center at x0 ∈M

m+1 and radiusR.We also denote by i(M,x0) the injectivity
radius of Mm+1 for geodesics starting at x0 ∈M

m+1
.
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Theorem 3.1. Let Mm+1
, m ≥ 2, be a Riemannian (m + 1)-dimensional

manifold whose sectional curvatures satisfy

(6) SectM (V ,∇ρ) ≤ −G
′′(ρ)

G(ρ)
, ∀ V ∈ TM, V ⊥ ∇ρ,

for a class C2 nondecreasing function G : [0, b) → R, which is positive on
(0, b) for some b > 0, and ρ(x) = ρ(x0, x) is the geodesic distance of Mm+1

starting at a point x0 ∈M
m+1

. LetM be a hypersurface ofMm+1
, T : TM →

TM be a nonnegative symmetric linear operator and Ω ⊂M be a connected
and open domain with compact closure such that Ω∩∂M = ∅. If Ω ⊂ BR(x0)

with R < i(M,x0), then, for every class C1 functions u, f : M → R, with u
nonnegative and compactly supported in Ω, we have

(7)

∫
Ω
G′(ρ)u(trT )e−fdµ ≤ G(R)

∫
Ω
|T (∇u− u∇f)|e−fdµ

+G (R)

∫
Ω
u [|| tr(AT )| − (div T )(∇ρ)|] e−fdµ.

Moreover, if Mm+1
= [0, b)× Sm, with the metric 〈·, ·〉M = dt2 +G(t)2dω2,

where dω2 is the metric of Sm, then it is not necessary to assume that T is
nonnegative.

Proof of Theorem 3.1. For every nonnegative class C1 function u : M → R,
it holds

divf (uT (X>)) = ef div(e−fuT (X>))

= u divf (T (X>)) + 〈∇u, T (X⊥)〉,

and so we have, using Proposition 2.1 and Lemma 2.1 for X = G(ρ)∇ρ,

divf (uT (X>)) ≥ G(ρ)〈∇ρ, T (∇u− u∇f)〉+ uG′(ρ)(trT )

+ uG(ρ)〈∇ρ, η〉 tr(AT ) + uG(ρ)(div T )(∇ρ).

On the other hand, by divergence theorem,∫
Ω

divf (uT (X>))e−fdµ =

∫
Ω

div(e−fuT (X>))dµ = 0,

which implies, after integration and some rearrangement,

(8)

∫
Ω
uG′(ρ)(trT )e−fdµ ≤

∫
Ω
G(ρ)〈−∇ρ, T (∇u− u∇f)〉e−fdµ

+

∫
Ω
uG(ρ)〈−∇ρ, η〉 tr(AT )e−fdµ

+

∫
Ω
uG(ρ)(div T )(−∇ρ)e−fdµ.
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Since Ω ⊂ BR(x0), then, for all x ∈ Ω, it holds ρ(x) ≤ R. Now, since G is
increasing and by using Cauchy-Schwartz inequality, we have∫

Ω
uG′(ρ)(trT )e−fdµ ≤ G(R)

∫
Ω
|T (∇u− u∇f)|e−fdµ

+G(R)

∫
Ω
u || tr(AT )| − (div T )(∇ρ)| e−fdµ.

This gives (7). When Mm+1
= [0, b) × Sm, with the metric 〈·, ·〉N = dt2 +

G(t)2dω2, the result follows from Remark 1, p.5. �

Remark 2. IfMm+1 has constant sectional curvature, then, in the statement
of Theorem 3.1, we can choose the base point x0 in order to minimize R.
In this case, we can replace R by (diam Ω)/2 in the Poincaré formula (7),
assuming diam Ω < 2i(M), where diam Ω and i(M) denote the extrinsic
diameter of Ω and the injectivity radius of Mm+1, respectively.

3.1. Space forms and the r-mean curvature. For an oriented hypersur-
faceM ofMm+1, we recall that the eigenvalues λ1, λ2, . . . , λm of A are called
principal curvatures. The symmetric functions associated to the immersion
are given by

(9) Sr =
∑

i1<...<ir

λi1 · · ·λir ,

where (i1, . . . , ir) ∈ {1, 2, . . . ,m}r. The r-mean curvature of M is defined
by

(10) Hr =
1(
m
r

)Sr.
When r = 1, we have H1 = H = 1

m trA, the mean curvature of M . For
r = 2 and M = Rm+1, H2 = 1

m(m−1)Scal, where Scal is the non-normalized
scalar curvature of M, and for r = m, we have that Hm = detA is the
Gauss-Kronecker curvature of M .

We recall that a hypersurface M of Mm+1 is called r-minimal if Hr van-
ishes on M . Properties of hypersurfaces involving the r-mean curvature,
including the case of r-minimal hypersurfaces, have been object of research
by many authors as, for example, [37], [44], [33], [6], [9], [39], [52], and [16].

Associated to the family of higher-order mean curvatures we have the
Newton transformations Pr : TM → TM , r ∈ {0, . . . ,m}, which are defined
recursively as

P0 = I, Pr = SrI −APr−1,
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where I : TM → TM is the identity operator. Clearly Pr is a self-adjoint
operator and APr = PrA. This operator has nice properties related with the
symmetric functions Sr. We first point out the following properties:

Lemma 3.1. For each 0 ≤ r ≤ m− 1 it holds:

(1) trPr = (m− r)Sr;
(2) trAPr = (r + 1)Sr+1;

(3) trA2Pr = S1Sr+1 − (r + 2)Sr+2.

Proof. See [55] and [13]. �

Definition 3.1. Let Qm+1
c be a (m + 1)-dimensional, simply-connected,

complete Riemannian manifold with constant sectional curvature c. If c > 0

consider Qm+1
c = Sm+1

+ (c) be the open upper hemisphere. We call these
manifolds space forms.

Before stating the consequences of Theorem 3.1, we show sufficient con-
ditions for the divergence of Pr to vanish. Such result is well-known in
literature, see [55] and [56].

Lemma 3.2. The divergence of the Newton transformations Pr vanishes, if
the ambient manifold M is a space form.

In order to state the next Poincaré type inequality, we need to define the
special functions

(11) Sc(t) =


t, if c = 0;

1√
−c sinh(

√
−ct), if c < 0;

1√
c

sin(
√
ct), if c > 0.

For space forms and Newton transformations we have the following result:

Theorem 3.2. If M is a hypersurface of Qm+1
c and Ω ⊂ M, Ω ∩ ∂M = ∅,

is a connected and open domain with compact closure, then, for every class
C1 functions u, f : M → R, with u nonnegative and compactly supported in
Ω, we have
(12)∫

Ω
uSrS ′c(ρ)e−fdµ ≤ C0

∫
Ω

[|Pr(∇u− u∇f)|+ (r + 1)|Sr+1|u] e−fdµ,

for C0 = 1
(m−r)Sc

(
diam Ω

2

)
. In particular, if Pr : TM → TM is nonnegative

definite, then

(13)
∫

Ω
uHrS ′c(ρ)e−fdµ ≤ C1

∫
Ω

[|∇u− u∇f |Hr + |Hr+1|u] e−fdµ,
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for C1 = (m− r)C0. Moreover, the equality holds if M is a geodesic sphere,
Ω = M, and f, u are constant functions.

Here, ρ : M → R+ is the distance function of Qm+1
c , restricted to M,

from a base point x0 ∈ Qm+1
c chosen to minimize the radius of the extrinsic

ball BR(x0) ⊇ Ω, (see Remark 2), Sr is the r-th symmetric function of the
eigenvalues ofM, Hr =

(
m
r

)−1
Sr is its r-mean curvature, and diam Ω denotes

the extrinsic diameter of Ω.

Proof. Indeed, in Qm+1
c we have (6) for G(t) = Sc(t) and using Lemma 3.2,

it holds divPr = 0 in space forms. From the second item of Lemma 3.1, we
have tr(APr) = (r + 1)Sr+1 and, by Theorem 3.1 and Remark 2, we obtain
(12). Moreover, if Pr is nonnegative definite, then

|Pr(U)| ≤ (trPr)|U | = (m− r)Sr|U |,

which, together with
(
m
r+1

) (
r+1
m−r

) (
m
r

)−1
= 1, gives (13), as desired. In

order to verify the equality, just notice that, in geodesic spheres of radius R,
it holds

λ1 = · · · = λm =
S ′c(R)

Sc(R)
.

The equality follows by direct substitution. �

Remark 3. There are some conditions to deduce that Pr is nonnegative def-
inite on a connected hypersurface. We point out some of them below:

(a) If Sr+1 = 0, then Pr is semi-definite. Thus, if r is odd, then we can
choose an orientation such that Pr is nonnegative definite;

(b) If Sr+1 = 0, r is even, and Sr ≥ 0;

(c) If r is odd, Sr+1 = 0, and Sr+2 6= 0, then we can choose an orientation
such that Pr is positive definite;

(d) If r is even, Sr+1 = 0, Sr+2 6= 0, and Sr ≥ 0, then Pr is positive
definite;

(e) If Sk > 0 for some 1 ≤ k ≤ m− 1 and there exists a point where all
the principal curvatures are nonnegative, then Pr is positive definite
for every 1 ≤ r ≤ k − 1.

The proofs of these claims can be found in [19], Proposition 2.8., p.192, (for
items (a) to (d)), [23], Proposition 3.2, p.188, (for item (e)).

In the following, we present some applications of the Poincaré inequalities
of Theorem 3.2. Denote by dµ the m-dimensional Lebesgue measure of M
and by dSµ the (m− 1)-dimensional Lebesgue measure of the boundaries of
the m-dimensional subsets of M. We also denote the volume of a set Ω by
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|Ω| and by BR ⊂ M the geodesic ball of M with radius R and center at a
point x0 ∈ M, and by ∂BR its boundary, i.e., the geodesic sphere of radius
R and center at x0. We omit the center of ball in the notation since it will
not be important in the statements of the results.

Corollary 3.1. Let M be a hypersurface of Rm+1 such that Hr+1 > 0,

r = 1, 2, . . . ,m−1, and Ω ⊂M, Ω∩∂M = ∅, be a connected and open domain
with compact closure. If M has a point whose all the principal curvatures
are nonnegative, then

(14) |Ω| ≤
r∑

k=0

(
diam Ω

2

)k+1 ∫
∂Ω
HkdSµ +

(
diam Ω

2

)r+1 ∫
Ω
Hr+1dµ.

Here, Hr is the r-mean curvature of M, defined by (10), p.7, and diam Ω is
the extrinsic diameter of Ω.

Proof. Taking f ≡ 1 and u = uε in (13), where

(15) uε(x) =

1, if dist(x, ∂BR) ≥ ε;
1

ε
dist(x, ∂BR), if dist(x, ∂BR) < ε,

and dist stands for the distance function on M, we obtain letting ε→ 0 and
using the coarea formula,

(16)
∫

Ω
Hrdµ ≤

diam Ω

2

[∫
∂Ω
HrdSµ +

∫
Ω
Hr+1dµ

]
.

By applying successively (16) and using Remark 3, item (e), we obtain the
result. �

Remark 4. In particular, for r = 0, we have

(17) |Ω| ≤
(

diam Ω

2

)[
|∂Ω|+

∫
Ω
Hdµ

]
,

and for r = 1, we obtain
(18)

|Ω| ≤
(

diam Ω

2

)
|∂Ω|+

(
diam Ω

2

)2 [∫
∂Ω
HdSµ +

1

m(m− 1)

∫
Ω

Scal dµ

]
,

where H is the mean curvature and Scal is the (non-normalized) scalar cur-
vature of M .

Remark 5. Isoperimetric inequalities in the spirit of (17) were obtained by
the first and the third authors in [3] for immersions in warped product man-
ifolds. We can also compare the previous results with Theorem 2 in [48],



POINCARÉ TYPE INEQUALITY 11

which states that ∫
M
Hkρ

pdµ ≤
∫
M
Hrρ

p+r−kdµ

for every closed hypersurface M of Rn+1 satisfying Hr > 0 and for every
p > 0 and 0 ≤ k < r (compare also with the results of [40]). Moreover, they
prove that equality holds only for round spheres. On its turn, by the proof
of our Poincaré type inquality (12), we obtain

(19)
∫
M
Hr−1dµ ≤

∫
M
ρ|Hr|dµ

for every closed hypersurface M, by taking u and f constant functions, with
equality holding for round spheres.

For a weakly locally convex hypersurface (i.e., M has nonnegative second
fundamental form), Pr is nonnegative definite for every r = 1, . . . ,m − 1.

Applying successively inequality (13), m − 1 times, for f ≡ 1, and u = uε

we obtain, letting ε→ 0 and using the coarea formula:

Corollary 3.2. If M is a weakly locally convex hypersurface of Rm+1, then
the volume of any geodesic ball BR of M with radius R satisfies

(20)
|BR|
Rm

≤
[

(Rmax∂BR |A|)m − 1

(Rmax∂BR |A|)− 1

]
|∂BR|
Rm−1

+

∫
BR
Hmdµ,

where Hm is the Gauss-Kronecker curvature ofM and |A| is the matrix norm
its second fundamental form. In particular, if there exists α > 0 such that
max∂BR |A| ≤ α/R, then

(21)
|BR|
Rm

≤ C(m,α)
|∂BR|
Rm−1

+

∫
BR
Hmdµ,

where C(m,α) = αm−1
α−1 . Moreover, if 0 < α < 1, then

(22)
|BR|
Rm

≤ 1

1− α
|∂BR|
Rm−1

.

Proof. Since λi ≤ |λi| ≤ |A| we have Hr ≤ |A|r. Applying (14) to Ω = BR
and k = m− 1, we obtain

|BR| ≤
m−1∑
r=0

Rr+1

∫
∂BR

HrdSµ +Rm
∫
BR
Hmdµ

≤
m−1∑
r=0

Rr+1 max
∂BR
|A|r|∂BR|+Rm

∫
BR
Hmdµ.
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This implies

|BR|
Rm

≤

[
m−1∑
r=0

(Rmax
∂BR
|A|)r

]
|∂BR|
Rm−1

+

∫
BR
Hmdµ,

which gives (20). Inequality (21) is an immediate consequence of (20) and
the hypothesis max∂BR |A| ≤ α/R. To conclude (22), just observe that Hm ≤
|A|m ≤ αm/Rm, which implies

|BR|
Rm

≤ αm − 1

α− 1

∂BR
Rm−1

+
αm

Rm
|BR|,

which gives the result. �

Remark 6. In fact, Corollary 3.2 holds for any hypersurface without any
assumption of convexity, by applying successively inequality (12). In this
case, (20) becomes

(23)
|BR|
Rm

≤ C(m)

[
(Rmax∂BR |A|)m − 1

(Rmax∂BR |A|)− 1

]
|∂BR|
Rm−1

+

∫
BR
|Hm|dµ,

where C(m) is a constant, depending only on m. This constant exists and it
holds C(m) ≤ 2m−1

m . In fact, since

Pr =
r∑

k=0

(−1)kSr−kA
k,

and |Sk| ≤
(
m
k

)
|A|k, we obtain

|Pr| ≤
r∑

k=0

|Sr−k||A|k ≤

[
r∑

k=0

(
m

r − k

)]
|A|r

=

[
r∑

k=0

(
m

k

)]
|A|r ≤

[
m−1∑
k=0

(
m

k

)]
|A|r

= (2m − 1)|A|r.

By (12) and reasoning as in the proof of Corollary 3.1, we obtain
(24)

|Ω| ≤
m−1∑
r=0

(
diam Ω

2

)r+1 ∫
∂Ω

[
|Pr|(

m
r

)
(m− r)

]
dSµ +

(
diam Ω

2

)m ∫
Ω
|Hm|dµ,
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which gives, for Ω = BR,

|BR|
Rm

≤

[
m−1∑
r=0

2m − 1(
m
r

)
(m− r)

(Rmax
∂BR
|A|)r

]
|∂BR|
Rm−1

+

∫
BR
|Hm|dµ

≤ 2m − 1

m

[
m−1∑
r=0

(Rmax
∂BR
|A|)r

]
|∂BR|
Rm−1

+

∫
BR
|Hm|dµ,

since
(
m
r

)
(m− r) = m

(
m−1
r

)
≥ m.

3.2. Einstein manifolds. Recall that a Riemannian manifoldM is Einstein
if there is a real number λ, called Einstein constant, such that its Ricci tensor
satisfies

Ric(X,Y ) = λ〈X,Y 〉, X, Y ∈ TM.

Such manifolds are interesting from both mathematical and physical view-
points. From the wiewpoint of physics, the metric of Einstein manifolds are
solutions to the vacuum Einstein field equations. From the mathematical
viewpoint, because the metric in such manifolds is a critical point of the
total scalar curvature with constraints, see for instance [17] for more details.

Example 1 (Space forms). The space forms Qm+1
c are examples of Einstein

manifolds with Einstein constant λ = mc.

Next, we present spaces whose sectional curvature is not constant.

Example 2 (Product spaces). Let M = Qp1c1 × Q
p2
c2 be the product of two

space forms. IfX,Y ∈ TQp1c1 and V,W ∈ TQp2c2 , then the sectional curvatures
of M are

SectM (X,Y ) = c1, SectM (V,W ) = c2, SectM (X,V ) = 0.

This gives Ric(X) = (p1−1)c1 and Ric(V ) = (p2−1)c2. Thus,M is Einstein
if and only if (p1 − 1)c1 = (p2 − 1)c2. The same reasoning holds for an
arbitrary product Qp1c1 × Q

p2
c2 × · · · × Q

pk
ck or for an arbitrary product of

Einstein manifolds.

Example 3 (Complex projective space). The complex projective space CPm+1

is a compact Einstein manifold with sectional curvatures lying in the interval
[1/4, 1] and Einstein constant m+ 2.

Example 4 (Schwarzschild metric). Consider S = R2 × S2 with the metric

(25) ds2 = dr2 + ϕ2(r)ds2
1 + ψ2(r)ds2

2,
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where we use polar coordinates in the plane R2, and ds2
1 and ds2

2 are the met-
rics on S1 and S2, respectively. It can be shown that the sectional curvatures
of S satisfy

SectS(X, ∂r) = −ϕ
′′(r)

ϕ(r)
, X ∈ TS1, SectS(V, ∂r) = −ψ

′′(r)

ψ(r)
, V ∈ TS2,

where −ϕ′′/ϕ = 2ψ′′/ψ. Choose the functions ϕ and ψ verifying the following
differential equations: 

(ψ′)2 = 1 + Cψ−1,

2ψ′′ = −Cψ−2,

ψ′ = αϕ,

for α and C determined by the initial data. To obtain smoothness of the
metric at the origin, we require that ϕ(0) = 0, ϕ′(0) = 1 and ψ(0) = β, for
some β > 0. A simple computation gives C = −β and 2α = β−1. With
this condition, we have ψ′′ = (β/2)ψ−2 > 0. A straightforward computation
show that the family of metrics (25) have Ricci curvature zero and so (S, ds2)

are Einstein manifolds, for more details see, for instance, [53], pp.75–76.

We now bring our attention to a family of Einstein manifolds with a
warped product metric. Such manifolds are interesting and the reader can
learn more about them in [30], [45], [21] and [42].

Example 5. (Warped produtcs) Recall that given two Riemannian mani-
folds (Mn, gM ) and (Fm, gF ) and a positive smooth function w on M , the
warped product metric on M × F is defined by

g = gM + w2gF .

We denote it as M ×w F . In [21] the authors notice that M ×w F is an
Einstein manifold if and only if

RicM −
m

w
Hessw = λgM ,

where Fm is an m-dimensional Einstein manifold. If M has nonempty
boundary, we assume that w = 0 on ∂M , see [42].

If M is a hypersurface of an Einstein manifold, then the first Newton
transformation P1 has divergence zero. This fact was proved in [36].

Lemma 3.3. The divergence of the first Newton transformation P1 vanishes
if the ambient manifold M is Einstein.
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Notice that, tracing the Gauss equation twice, for an adapted orthonormal
frame {e1, e2, . . . , em, η}, we have

(26)
m∑
i=1

Ric(ei, ei)− Ric(η, η) = Scal− 2S2.

In particular, if M is an Einstein manifold with Einstein constant λ, i.e.,
Ric(X,Y ) = λ〈X,Y 〉, then

(27) (m− 1)λ = Scal− 2S2,

where Scal denotes the scalar curvature of M.

Fix x0 ∈ M
m+1

. Let Bt(x0) be a ball of Mm+1 with center at x0 and
radius t > 0, and γ be a geodesic ray such that γ(0) = x0. Define Fx0 :

[0, i(M,x0))→ R+ by

(28) Fx0(t) = max
Bt(x0)

{
SectM (V , γ′), ∀ V ∈ TM, V ⊥ γ′

}
,

i.e., Fx0(t) is maximum of all the radial sectional curvatures of Mm+1 in
the geodesic ball Bt(x0). Here, i(M,x0) is the injectivity radius of M at x0.

Since Fx0 is a nondecreasing function of t, it is continuous and differentiable
almost everywhere. Let Gx0 : [0, i(M,x0))→ R+ be a weak solution to

(29) G′′x0(t) + Fx0(t)Gx0(t) ≤ 0.

Example 6. For the examples we presented earlier, we have:

(i) Fx0(t) = c := max{c1, c2} for M = Qp1c1 ×Q
p2
c2 , which gives Gx0(t) =

Sc(t), for every x0 ∈M ;

(ii) Fx0(t) = 1 for M = CPm+1, which gives Gx0(t) = S1(t), for every
x0 ∈M ;

(iii) Fx0(t) = 2ψ′′(t)/ψ(t) = −ϕ′′(t)/ϕ(t) for M = R2 × S2 with the
Schwarzschild metric, since ψ′′ > 0, which gives Gx0(t) = ϕ(t). Here,
x0 ∈M is the pole, i.e., the point of M where t = 0.

Notice that, in all these examples, the function Gx0 is nonnegative and non-
decreasing.

For hypersurfaces of Einstein manifolds we have the following Poincaré
type inequality:

Theorem 3.3. Let Mm+1 be an Einstein manifold, with Einstein constant
λ. Assume there exists x0 ∈ M

m+1 such that Gx0, defined by (29), is non-
negative and nondecreasing in a ball BR(x0), and let ρ(x) = ρ(x, x0), be the
distance function of Mm+1 starting at x0. If M is a hypersurface of Mm+1



16 HILÁRIO ALENCAR, MÁRCIO BATISTA AND GREGÓRIO SILVA NETO

and Ω ⊂M ∩BR(x0) is a connected and open domain, with compact closure,
such that Ω ∩ ∂M = ∅ and R < i(M,x0), then, for every class C1 functions
u, f : M → R, with u nonnegative and compactly supported in Ω, we have
(30)∫

Ω
uS1G

′
x0(ρ)e−fdµ ≤ C0

∫
Ω

[|P1(∇u− u∇f)|+ |Scal− (m− 1)λ|u] e−fdµ,

where C0 = 1
(m−1)Gx0(R) and Gx0 is a solution to (29). In particular, if

P1 : TM → TM is nonnegative definite, then
(31)∫

Ω
uS1G

′
x0(ρ)e−fdµ ≤ C1

∫
Ω

[
|∇u− u∇f |S1 +

∣∣∣∣ Scal

m− 1
− λ

∣∣∣∣u] e−fdµ,
for C1 = (m− 1)C0.

Proof. Indeed, using Lemma 3.3 we have that divP1 = 0 on an Einstein
manifold. By the definition of Gx0 , we have that

SectM (V , γ′) ≤ −
G′′x0(t)

Gx0(t)
, ∀ V ∈ TM, with V ⊥ γ′.

From the second item of Lemma 3.1 we have tr(AP1) = 2S2. Using (27) and
Theorem 3.1, we obtain (30). Moreover, if P1 is nonnegative definite, then

|P1(U)| ≤ (trP1)|U | = (m− 1)S1|U |,

which gives (31), as desired. �

4. Rigidity results

In this section we state some rigidity results which are consequences of
our Poincaré type inequality. Let

(32) hc(t) =


t, if c = 0;

1√
−c sinh(

√
−ct), if c < 0;

1, if c > 0.

Notice that Sc(t) = hc(t) for c ≤ 0 and Sc(t) ≤
√
chc(t) for c > 0. Recall

that BR denotes the geodesic ball of M with radius R and center at some
point p0 ∈ M . If M is complete and we make R → ∞, the center p0 of the
ball does not matter, and for this reason we omit the center of the ball in
the notation of the results of this and the next sections.

The first result reads as follows:



POINCARÉ TYPE INEQUALITY 17

Theorem 4.1. Let M be a complete (r+ 1)-minimal hypersurface, 1 ≤ r ≤
m−1, of a space form Qm+1

c of constant sectional curvature c ∈ R such that
r is odd, or r is even and Hr ≥ 0. If

(33) lim inf
R→∞

hc(R)

R

∫
BR\BR/2

Hrdµ = 0,

then M is foliated by (m− r + 1)-dimensional totally geodesic submanifolds
of Qm+1

c . Moreover,

(i) if Qm+1
c = Rm+1 and M has nonnegative Ricci curvature, then M =

N r−1 × Rm−r+1, where N r−1 is a (r − 1)-dimensional Riemannian
manifold;

(ii) if Qm+1
c = Sm+1

+ (c), the open upper hemisphere, and M has Ricci
curvature bounded from below by c, then M is totally geodesic.

Here, hc is defined by (32), Hr is the r-mean curvature defined by (10), and
BR is the geodesic ball of M.

Proof. First notice that, by the first item in Remark 3, since Sr+1 ≡ 0, we
have that Pr is semi-definite. If r is odd, we can choose an orientation such
that Pr is positive semi-definite. This implies 1

m−r trPr = Sr ≥ 0. If r is
even it does not happen, but the assumption that Sr ≥ 0 assures that Pr is
positive semi-definite. This implies that

|Pr(U)| ≤ (trPr)|U | = (m− r)Sr|U |, U ∈ TM.

Taking Ω = BR in the inequality (13), we have that diamBR ≤ 2R, since
the extrinsic distance is less than or equal to the intrinsic distance, and

(34)
∫
BR
uSrS ′c(ρ)dµ ≤ Sc(R)

∫
BR
|∇u|Srdµ,

where Sc is defined by (11). Taking a positive cut-off function u : M → R
such that

(35)


u ≡ 1 in BR/2;

|∇u| ≤ C/R in BR \ BR/2;

u ≡ 0 in M \ BR,
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for some C > 0, we obtain∫
BR/2

SrS ′c(ρ)dµ ≤
∫
BR
uSrS ′c(ρ)dµ

≤ Sc(R)

∫
BR
Sr|∇u|dµ

≤ CSc(R)

R

∫
BR\BR/2

Srdµ

≤ C max{1,
√
c}hc(R)

R

∫
BR\BR/2

Srdµ.

Making R→∞, we obtain∫
M
SrS ′c(ρ)dµ ≤ C max{1,

√
c} lim inf

R→∞

hc(R)

R

∫
BR\BR/2

Srdµ = 0,

which implies that Sr ≡ 0. Since Sr+1 ≡ 0 ≡ Sr, by Lemma 2.1, p.252, of
[43], we obtain that A has rank at most r − 1, i.e., M has index of relative
nullity at least m−r+1. By using Proposition 1.18, p.24 of [32], we conclude
that M is foliated by (m− r+ 1)-dimensional totally geodesic submanifolds
of Qm+1

c . If Qm+1
c = Rm+1 and M has nonnegative Ricci curvature, then

by using Hartman’s splitting theorem (see [32], Theorem 7.15, p.196), M =

N r−1×Rm−r+1. IfQm+1
c = Sm+1

+ (c) and the Ricci curvature ofM is bounded
from below by c, then by Corollary 7.12, of [32], M is totally geodesic. �

Remark 7. If we replace the decay condition on Hr in the hypothesis of
Theorem 4.1 by

lim inf
R→∞

hc(R)

R

∫
BR\BR/2

|A|rdµ = 0,

then we do not need assume that Hr ≥ 0 for r even. Indeed, in this case we
can use (12) and the discussion in Remark 6, to estimate |Pr|.

Let Mm+1 be an Einstein manifold and M be a complete hypersurface of
M

m+1. Define, for each x0 ∈M
m+1,

Gx0(t) =

Gx0(t), if i(M,x0) =∞ and M ∩ (M \BR(x0)) 6= ∅, ∀R > 0;

1, if M ⊂ BR0(x0) for some R0 > 0,

where Gx0 is the solution to (29). Thus, for Einstein manifolds, we have:

Theorem 4.2. Let Mm+1 be an Einstein manifold, with Einstein constant
λ. Assume there exists x0 ∈ M

m+1 such that Gx0 , defined by (29), is non-
negative and nondecreasing. If M is a complete hypersurface of Mm+1

, with
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constant scalar curvature (m− 1)λ, such that

(36) lim inf
R→∞

Gx0(R)

R

∫
BR\BR/2

Hdµ = 0,

then M is totally geodesic.
Here, H denotes the mean curvature of M and BR denotes the geodesic

ball of M.

Proof. The eigenvalues of P1 are S1−λi, where λi are the principal curvatures
of M. Since S2 ≡ 0 and S1 ≥ 0, we have

S1 − λi ≤ S1 + |λi| ≤ S1 +
√
λ2

1 + · · ·+ λ2
m = S1 + |A| = 2S1,

i.e., |P1| ≤ 2S1. On the other hand, by the definitions of Fx0 (see (28)) and
Gx0 , we have

SectM (V , γ′) ≤ −
G′′x0(t)

Gx0(t)
, ∀ V ∈ TM, with V ⊥ γ′.

Following the same reasoning of the proof of Theorem 4.1, but applying
Theorem 3.3, for the cut-off function (35), we have∫

BR/2
S1G

′
x0(ρ)dµ ≤ Gx0(R)

m− 1

∫
BR
|P1(∇u)|dµ

≤ 2mGx0(R)

m− 1

∫
BR
|∇u|Hµ

≤ 2m

m− 1

Gx0(R)

R

∫
BR\BR/2

Hdµ.

Taking R → ∞ and observing that Gx0(R) < Gx0(R0) < ∞ over M, if
M ⊂ BR0(x0) for some R0 > 0, we conclude, by using the hypothesis (36),
that S1 ≡ 0. This gives |A| =

√
S2

1 − 2S2 = 0, i.e.,M is totally geodesic. �

Since space forms are particular cases of Einstein manifolds for λ = mc,
we have

Corollary 4.1. If M is a complete hypersurface with constant scalar curva-
ture m(m− 1)c in a space form Qm+1

c of constant sectional curvature c ∈ R,
such that

lim inf
R→∞

hc(R)

R

∫
BR\BR/2

Hdµ = 0,

then M is totally geodesic.
Here, hc is defined by (32), H is the mean curvature, and BR is the geo-

desic ball of M with radius R.
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As a consequence of the proof of Theorem 4.1, we obtain:

Corollary 4.2. There is no complete (r+1)-minimal hypersurface, 1 ≤ r ≤
m−1, in a space form Qm+1

c of constant sectional curvature c ≤ 0, such that

(i) either r is odd, or r is even and Hr ≥ 0;

(ii) M is contained in a geodesic ball of Qm+1
c , and

(iii) lim inf
R→∞

1

R

∫
BR\BR/2

Hrdµ = 0.

Here, Hr is the r-mean curvature defined by (10), and BR denotes the geo-
desic ball of M with radius R.

Remark 8. We would like to point out that assumptions about the integral
growth for Hr on balls are common in the literature; for example, see [36], [1]
and references therein. More specifically, we notice that, in [1], Do Carmo,
the first, and third authors, obtained a non-existence result for hypersurfaces
in R4 with zero scalar curvature, Gauss-Kronecker curvature Hm bounded
away from zero, and polynomial growth of the quantity

∫
BR H dµ. Further-

more, there are in the literature some splitting results for hypersurfaces with
constant scalar curvature immersed in some space forms; see for example
[22] and [8]. Finally, we see that our results combines some kind of decay
of
∫
BR\BR/2

Hr dµ with geometric constrains to produce results of rigidity or
non-existence.

5. Rigidity of self-similar solutions to curvature flows

Let ψ : Mm → Rm+1 be hypersurface. The evolution of ψ(M) by the
curvature is smooth a one-parameter family Ψ : M×I → Rm+1 of immersions
Ψt := Ψ(·, t) : M → Rm+1 solving the initial value problem

(37)


∂Ψ

∂t
(x, t) = (Sr+1(x, t))αη(x, t),

Ψ(x, 0) = ψ(x),

for α ∈ R−{0} and Sr+1 is defined by (9). The initial value problem (37) is
also called a curvature flow. These flows have been studied by many authors
in the last four decades, see, for example, [24], [57], [25], [58], [59], [10], [11],
their citations, and references therein. We also quote the recent book [12]
for an extensive introduction of these flows.

A homothetic solution to the flow (37) is a hypersurface satisfying the
equation

(38) Sαr+1 = δ〈ψ, η〉,
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for some nonzero real number δ. A hypersurface satisfying (38) evolves by di-
lations and contractions via the flow. If δ > 0, then the hypersurface evolves
by dilation and it is called a self-expander. If δ < 0, then the hypersurface
evolves by contraction and its is called a self-shrinker.

Remark 9. Homothetic solutions are examples of self-similar solutions, which
are those solutions which evolves by flow without changing their shapes.
Other examples are the translating solitons, which evolves translating the
initial hypersurface in a fixed direction and those which evolves by a rotation
of Rm+1. For more details, see [12].

Homothetic solutions to curvature flows have received considerable atten-
tion in recent years, see, for example [50], [28], [35], [18],[38], [41], [26], [51],
[4], and [5].

For homothetic solutions to the curvature flow (37) we can state:

Theorem 5.1. Let M be a complete homothetic solution to the curvature
flow (37) in Rm+1, 1 ≤ r ≤ m− 1, such that

(i) α = p/q, where p and q are odd integers;
(ii) or α > 0 and Sr+1 ≥ 0;

(iii) or α < 0 and Sr+1 > 0.

If δSr ≥ 0 and

(39) lim inf
R→∞

∫
BR\BR/2

|A|rdµ = 0,

then

(i) M is a hyperplane if α > 0;

(ii) there is no such hypersurface if α < 0.

Here, BR denotes the geodesic ball of M with radius R and |A| is the norm
of the second fundamental form.

Proof. Using (8) and Remark 1, we have that

(m− r)
∫

Ω
uSrdµ =

∫
Ω
〈−X,Pr(∇u)〉dµ+ (r + 1)

∫
Ω
u〈−X, η〉Sr+1dµ,
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for X = ρ∇ρ. Since Sαr+1 = δ〈ψ, η〉 and ψ = X in Rm+1, we have∫
Ω
u[(m− r)δSr + (r + 1)Sα+1

r+1 ]dµ = δ

∫
Ω
〈−ρ∇ρ, Pr(∇u)〉dµ

≤ |δ| diam Ω

2

∫
Ω
|Pr||∇u|dµ

≤ (2m − 1)|δ| diam Ω

2

∫
Ω
|A|r|∇u|dµ,

since |Pr| ≤ (2m − 1)|A|r by Remark 6. Taking Ω = BR a geodesic ball of
M with radius R, we have diamBR ≤ 2R, since the extrinsic distance is less
than or equal to the intrinsic distance. Using the cut-off function defined in
(35), we obtain∫

BR/2
u[(m− r)δSr + (r + 1)Sα+1

r+1 ]dµ ≤ c(m, r)|δ|
∫
BR\BR/2

|A|rdµ.

Notice that, if α = 2a+1
2b+1 , a, b ∈ Z, then

Sα+1
r+1 =

(
S
a+b+1
2b+1

r+1

)2

≥ 0

no matter the signal of Sr+1. Taking R → ∞ and using the hypothesis, we
obtain

Sr ≡ Sr+1 ≡ 0 ≡ 〈ψ, η〉,
which implies thatM is a hyperplane, since it is smooth, for α > 0, (see also
[31]) and leads to a contradiction for α < 0, since Sαr+1 is defined, in this
case, only for Sr+1 > 0. �

Remark 10. The proof of the Theorem 5.1 holds in the general setting
of a Riemannian manifold M

m+1 with bounded sectional curvatures by
G′′(t)/G(t). So, we consider hypersurfaces satisfying the equation

Sαr+1 = δ〈G(ρ)∇ρ, η〉.

These surfaces have been object of research in recent years as self-similar
solutions to curvature flows in ambient spaces other than Rm+1, see, for
example, [7] and [29]. If

lim inf
R→∞

G(R)

R

∫
BR\BR/2

|A|rdµ = 0, if G is unbounded;

lim inf
R→∞

1

R

∫
BR\BR/2

|A|rdµ = 0, if G is bounded,

then M satisfies

(40) Sr ≡ Sr+1 ≡ 0 ≡ 〈G(ρ)∇ρ, η〉,
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(assuming c 6= 0). The classification of hypersurfaces satisfying (40) depends
on the ambient space we are considering. In the space form Qm+1

c , for
example, by using the results in [31] and (40), we can conclude that M is
totally geodesic if α > 0 and that the hypersurface does not exist if α < 0.
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