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1 Introduction and Tribuzy’s contributions

In 1951, H. Hopf, see [44] and [45], proved that the only surfaces with
constant mean curvature in R3, homeomorphic to the sphere, are the round
spheres. Hopf gave two different proofs of this result. In the first proof,
one considers the second fundamental form II in isothermal parameters
and takes the (2, 0)-component of II, i.e., II(2,0) = (1/2)Pdz2. It can be
shown that the complex function P vanishes precisely at the umbilical
points of Σ and it is holomorphic if and only if the mean curvature of Σ is
constant. It is also seen that the quadratic form II(2,0) does not depend on
the parameter z; hence, it is globally defined on Σ. It is a known theorem
on Riemann surfaces that if the genus g of Σ is zero, any holomorphic
quadratic form vanishes identically. Then P = 0, i.e., all points of Σ are
umbilic, and hence Σ is a standard sphere. His second proof is based on
the lines of curvature. The quadratic equation Im(Pdz2) = 0 determines
two fields of directions (the principal directions), whose singularities are
the zeroes of P . Since P is holomorphic, if z0 is a zero of P , either P = 0

in a neighborhood V of z0 or

P (z) = (z − z0)
khk(z), z ∈ V, k ≥ 1, (1.1)

where hk is a function of z with hk(z0) ̸= 0, see for example [51], p. 208-
209. This number k is called the order of the zero. In particular, if P is not
identically zero in a neighborhood of z0, then z0 is an isolated singularity
of the field of directions with index −k/2. Since Σ has genus zero, by the
Poincaré index theorem, the sum of the indices of all singularities for any
field of directions is two (hence positive). This lead us to a contradiction,
and thus P is identically zero.

In 1933, Carleman [25] was the first to observe that this property holds
for non-analytic smooth functions which satisfies some first order partial
differential equation. In fact, he proved that a solution h : U ⊂ C → C of

∂h

∂z̄
= ah+ bh̄,
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does not admits a zero of infinite order except if h = 0. Here bars mean
complex conjugate and a, b are continuous complex functions. Notice that,
if a = b = 0, then h is holomorphic. Using these ideas, Hartman and
Wintner, see [43] and [42], and Chern, see [28], proved their well known
results on the classification of special Weingarten surfaces.

Following the ideas of Chern, in 1987 [35] (see also [36]), Eschenburg
and Tribuzy proved the following result:

Theorem 1.1 (Eschenburg-Tribuzy). Let h : U ⊂ C → C be a complex
function defined in an open set U of the complex plane. Assume that∣∣∣∣∂h∂z̄

∣∣∣∣ ≤ φ(z)|h(z)| (1.2)

where φ is a Lp, p > 2, non-negative real function. Assume further that
z = z0 ∈ U is a zero of h. Then either h ≡ 0 in a neighborhood V ⊂ U of
z0, or

h(z) = (z − z0)
khk(z), z ∈ V, k ≥ 1,

where hk(z) is a continuous function with hk(z0) ̸= 0.

Remark 1.2. Eschenburg and Tribuzy called inequality (1.3) the Cauchy-
Riemann inequality.

By using this result, Eschenburg and Tribuzy extended the result of
Hopf in the following way:

Theorem 1.3 (Eschenburg-Tribuzy). Let Q3
c be a three-dimensional Rie-

mannian manifold with constant sectional curvature c ∈ R. Let X : Σ →
Q3

c be an immersed surface with mean curvature function H. Assume that
Σ is homeomorphic to the sphere. If there exists a locally Lp, p > 2,

function f : Σ → R such that

|dH| ≤ f
√
H2 −K + c, (1.3)

where K is the Gaussian curvature of Σ, then X(Σ) is totally umbilical.
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The idea behind the proof is that the Hopf quadratic differential on
an immersed sphere vanishes when the mean curvature is constant, and
by definition of the Hopf differential its zeroes are umbilical points of the
surface. Thus the immersed sphere is umbilical. When the mean curvature
satisfies a Cauchy-Riemann inequality, then the zeros of the Hopf differen-
tial are all isolated and of negative index, or every point is a a zero of the
Hopf form. This index is with respect to the two eigendirection lines at
the points where the Hopf form is non zero. Since the sum of the indices
of the zeros (when they are all isolated) is positive, the Hopf form must
vanish on the surface. Thus each point is umbilical.

When an immersed sphere in M = S2×R or M = H2×R has constant
mean curvature, Abresch and Rosenberg, see [1], found a holomorphic
quadratic differential Q on the surface generalizing the Hopf differential,
that has the property that when it vanishes on the surface, then the sphere
must be a rotationally invariant surface in M (umbilical only when the
surface is a slice, where the mean curvature is zero). This differential was
found by calculating the second fundamental form of the rotational exam-
ples and making a simple modification of the Hopf form to find a quadratic
form that vanishes on the rotational surfaces and that characterizes the
rotational surfaces, i.e., when the form vanishes on an immersed surface,
then the surface is indeed rotational.

To weaken the hypothesis of constant mean curvature, Alencar, do
Carmo, and Tribuzy found in [4] a Cauchy-Riemann inequality involving
the differential Q. This implies the zeros of Q satisfy the same conditions
as that of the Hopf form in the previous paragraph. Here the index of
an isolated zero of Q is with respect to the two eigendirections of Q at a
non zero point. Since the sum of the indices of the isolated zeros would
be positive, Q must vanish identically. Then one applies the theorem of
Abresch-Rosenberg to conclude it is rotational. Namely, they obtained

Theorem 1.4 (Alencar-do Carmo-Tribuzy, 2007). Let Σ be a compact
immersed surface of genus zero in H2 × R or S2 × R. Assume that

|dH| ≤ φ|Q(2,0)|,



Hopf type theorems in Riemannian manifolds 25

where |dH| is the norm of the differential dH of the mean curvature H of Σ,
Q(2,0) is the (2, 0)-part of the Abresch-Rosenberg quadratic differential, and
φ is a continuous, non-negative real function. Then Q(2,0) is identically
zero, and Σ is an embedded surface invariant by rotations in H2 × R or
S2 × R.

In [5], the first author, do Carmo and Tribuzy generalized the Abresch-
Rosenberg quadratic differential to higher-codimensions and, using The-
orem 1.3, the index argument explained earlier, and some arguments of
reduction of codimension, as Theorem 4 of [58], they were able to prove

Theorem 1.5 (Alencar-do Carmo-Tribuzy, 2010). Let Σ be a compact
surface of genus zero and let x : Σ → En

c × R, n ≥ 2, be an immersion
of Σ with parallel mean curvature, where En

c is a space form of constant
sectional curvature c ∈ R. Then, one of the following assertions holds:

1) x(Σ) is a minimal surface of a totally umbilical hypersurface of En
c ;

2) x(Σ) is a standard sphere of a totally umbilical 3-dimensional sub-
manifold of En

c ;

3) x(Σ) is a standard sphere of E3
c ;

4) x(Σ) lies in E4
c×R ⊂ R6 (possibly with the Lorentz metric), and there

exists a plane P such that x(Σ) is invariant for rotations which fix its
orthogonal complement. Furthermore, the level curves of the height
function p 7→ ⟨x(p), ξ⟩ are circles lying in planes parallel to P . Here,
ξ is the direction vector of the R component of En

c × R.

To conclude the list results with the contribution of Renato Tribuzy
in this subject, we can also cite the result of the first author, do Carmo, Fer-
nandez and Tribuzy [3]. They generalized the Abresch-Rosenberg quadratic
differential for three-dimensional simply connected homogeneous spaces
with four dimensional isometry group E3(κ, τ). By using Theorem 1.3 and
an argument analogous to the proof of Theorem 1.4, they proved
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Theorem 1.6 (Alencar-do Carmo-Fernandez-Tribuzy, 2007). Let Σ be a
compact surface of genus zero immersed in E3(κ, τ). Assume that

|dH| ≤ φ|Q(2,0)|,

where φ is a non-negative real continuous function and Q(2,0) is the (2, 0)

part of the generalized Abresch-Rosenberg quadratic differential in E3(κ, τ).

Then Q(2,0) is identically zero and, by [2], Σ is a constant mean curvature
surface invariant by rotations in E3(κ, τ).

2 Weighted Riemannian manifolds

In this section, we present a generalization of Theorem 1.3 and its
application to surfaces in Rn with weighted measure as we define later.
These results are the main results the the paper [6] of the authors.

An immersion X : Σ → Rn of a two-dimensional surface Σ is called a
self-shrinker for the mean curvature flow if its mean curvature vector H

satisfies the equation

H = −1

2
X⊥,

where X⊥ is the normal part of the position vector. Self-shrinkers are the
self-similar solutions of the mean curvature flow and many efforts were
made in the last decades in order to obtain examples of such surfaces and
classify these surfaces under certain geometrical restrictions. In particular,
there is a problem to classify the sphere as the only compact self-shrinker
under some geometrical assumptions, as we can see, for example, in [46],
[30], [23], [47], [20], among others. In this spirit, the authors proved in [6]
the following result:

Theorem 2.1 (Theorem 1.2 of [6]). Let X : Σ → R3 be an immersed
self-shrinker homeomorphic to the sphere. If there exists a non-negative
locally Lp function φ : Σ → R, p > 2, and a locally integrable function
G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(∥X∥2 − 4H2)H2 ≤ φ2G(∥Φ∥)2, (2.1)
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then X(Σ) is a round sphere of radius 2 and centered at the origin.
Here ∥Φ∥ denotes the matrix norm of Φ = A − (H/2)I, where A is

the shape operator of the second fundamental form of X, H is its non-
normalized mean curvature, and I is the identity operator of TΣ.

Since the Hopf’s differential is not holomorphic for self-shrinkers, in
order to prove Theorem 2.1 we need some notion of weak holomorphy
which can can be used for self-shrinkers. This is given by the following
result, which generalizes Theorem 1.3, also proved by the authors in [6]:

Theorem 2.2 (Theorem 1.1 of [6]). Let h : U ⊂ C → C be a complex
function defined in an open set U of the complex plane and z = z0 ∈ U be
a zero of h. If there exists φ ∈ Lp

loc(U), p > 2, a non-negative real function
such that ∣∣∣∣∂h∂z̄

∣∣∣∣ ≤ φ(z)G(|h(z)|), (2.2)

where G : [0,∞) → [0,∞) is a locally integrable function such that

lim sup
t→0+

G(t)

t
<∞,

then either h = 0 in a neighborhood V ⊂ U of z0, or

h(z) = (z − z0)
khk(z), z ∈ V, k ≥ 1, (2.3)

where hk(z) is a continuous function with hk(z0) ̸= 0.

Theorem 2.2 has the following immediate consequence:

Corollary 2.3. Let h : U ⊂ C → C be a complex function defined in an
open set U of the complex plane. If (2.2) holds, then on each connected
components of U which contains a zero of h, either h ≡ 0 or the zeroes of
h are isolated.

Remark 2.4. The case when φ = 0 is equivalent to that h is holomorphic.
The case when G(t) = t and φ is continuous, Theorem 2.2 is the Main
Lemma in [4] which implies Chern’s Lemma in [28]. Theorem 2.2 also
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implies Lemma 2.3, p. 154, of [36]. There are many functions satisfying
the condition lim supt→0G(t)/t <∞. In fact, if G is a continuous function
such that G(0) = 0, then lim supt→0G(t)/t = G′(0), if it exists. Moreover,
if G is any convex function with G(0) = 0, then G(t)/t ≤ G(1) for small
0 < t < 1, which implies that convex functions also satisfy the condition.
In particular, the functions G(t) = tα, α ≥ 1, satisfy the condition. On
the other hand, there are concave functions which satisfy this condition,
for example G(t) = sin t, 0 ≤ t ≤ π/2.

Theorem 2.1 is a consequence of the more general result Theorem
2.5, p.30, which holds for parallel weighted mean curvature surfaces in
R2+m, m ≥ 1, where the weight is a radial function (i.e., which depends
only on the distance of the point to the origin). In order to state this
result, we shall need to give a brief introduction to weighted geometry
in Rn. We refer, for example, [27] for a more detailed exposition. We
call (Rn, ⟨·, ·⟩, e−f ) a weighted Riemannian manifold if it has a weighted
measure dVf = e−fdV, where f : Rn → R is a function of class C2. Let
X : Σ → Rn be an immersion of a surface Σ. Consider Σ with the weighted
measure

dΣf = e−fdΣ,

and the induced metric ⟨·, ·⟩.
The first variation of the weighted volume Vf (Σ) =

∫
Σ e

−fdΣ is given
by

d

dt
Vf (Σt)

∣∣∣∣
t=0

= −
∫
Σ
⟨T⊥,Hf ⟩e−fdΣ,

where T is a compactly supported variational vector field on Σ and

Hf = H+ (∇f)⊥ (2.4)

is the weighted mean curvature vector of Σ in Rn. Here (∇f)⊥ denotes
the part of the gradient ∇f of f in Rn normal to Σ and H denotes the
non-normalized mean curvature vector of Σ in Rn, i.e., the trace of the
operator

B(Z,W ) = ∇ZW −∇Σ
ZW,



Hopf type theorems in Riemannian manifolds 29

where ∇ and ∇Σ denote the connections of Rn and Σ, respectively.

We say that a surface Σ has parallel weighted mean curvature if Hf is
parallel in the normal bundle, i.e., ∇⊥Hf = 0. In particular, if Hf = 0,

we say that Σ is f -minimal.

In the case that f(X) = ∥X∥2/4, we call the weighted manifold
(Rn, ⟨·, ·⟩, e−∥X∥2/4) the Gaussian space. Notice that self-shrinkers are f -
minimal surfaces in the Gaussian space.

If the codimension is one, the parallel weighted mean curvature surfaces
in the Gaussian space are called λ-surfaces. By using (2.4), we can see that
λ-surfaces are characterized by the equation

λ = H +
1

2
⟨X,N⟩,

where λ ∈ R, N is the unit normal vector field of the immersion, and H

is its mean curvature, i.e., H = HN. Observe that self-shrinkers of R3 are
also λ-surfaces for λ = 0.

For each point p ∈ Σ we can take isothermal parameters u and v in a
neighborhood of p, i.e.,

ds2 = α(u, v)(du2 + dv2),

where ds2 is the metric of Σ and α(u, v) is a positive smooth function on
Σ. Complexifying the parameters by taking z = u+ iv, we can identify Σ

with a subset of C. In this case, we have

⟨Xz, Xz̄⟩ =
α(z)

2
and ds2 = α(z)|dz|2.

The immersion X satisfies the equations
∇XzXz =

αz

α
Xz +B(Xz, Xz),

∇Xz̄Xz =
α

4
H,

∇Xz̄Xz̄ =
αz̄

α
Xz̄ +B(Xz̄, Xz̄),

(2.5)
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and, for any ν ∈ TΣ⊥,
∇Xzν = −1

2
⟨H, ν⟩Xz −

2

α
⟨B(Xz, Xz), ν⟩Xz̄ +∇⊥

Xz
ν

∇Xz̄ν = − 2

α
⟨B(Xz̄, Xz̄), ν⟩Xz −

1

2
⟨H, ν⟩Xz̄ +∇⊥

Xz̄
ν,

(2.6)

where ∇⊥ is the connection of the normal bundle TΣ⊥.

Let us denote by

P νdz2 = ⟨B(Xz, Xz), ν⟩dz2

the (2, 0)-part of the second fundamental form of Σ in Rn relative to the
normal ν ∈ TΣ⊥. This quadratic form is also called the Hopf quadratic
differential.

The follolwing theorem, which was proven in [6], is a rigidity result
for parallel weighted mean curvature Hf surfaces in the Euclidean space
with arbitrary codimension and radial weight f(X) = F (∥X∥2), where
F : R → R is a function of class C2. Since the codimension can be
arbitrary large, we assume that X(Σ) does not lie in any proper affine
subspace of the Euclidean space.

Theorem 2.5. Let X : Σ → R2+m, m ≥ 1, be an immersion of a sur-
face homeomorphic to the sphere. Assume that all the following assertions
holds:

i) X has parallel weighted mean curvature Hf , i.e., ∇⊥Hf = 0, for a
radial weight f(X) = F (∥X∥2), where F : R → R is a function of
class C2.

ii) There exists a unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν =

0.

iii) There exists a non-negative locally Lp function φ : Σ → R, p >

2, and a locally integrable function G : [0,∞) → [0,∞) satisfying
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lim supt→0G(t)/t <∞, such that∣∣F ′(∥X∥2)⟨Hf , ν⟩ − 2
[
2F ′′(∥X∥2) + (F ′(∥X∥2))2

]
⟨X, ν⟩| ∥X⊤∥

≤ φG(∥Φν∥).
(2.7)

Then X(Σ) is contained in a round hypersphere of R2+m. Moreover, if
H ̸= 0 and ν = H/∥H∥, then X(Σ) is a minimal surface of a round
hypersphere of R2+m or it is a round sphere in R2+m.

Here X⊤ denotes the component of X tangent to TΣ, ∥Φν∥ denotes
the matrix norm of Φν = Aν − (trAν/2)I, where Aν is the shape operator
of the second fundamental form of X relative to ν, trAν is its trace, and
I : TΣ → TΣ is the identity operator.

The ideia of the proof is to apply the Cauchy-Riemann inequality of
Theorem 2.2, to the quadratic differential Qν = e−

1
2
fP ν and conclude

that P ν , is identically zero in a neighborhood V of a zero z0 or this zero
is isolated and the index of a direction field determined by Im[P νdz2] = 0

is negative. If, for some coordinate neighborhood V of zero, P ν = 0, this
holds for the whole Σ. Otherwise, the zeroes on the boundary of V will
contradict to Theorem 2.2. So if P ν is not identically zero, all zeroes, if
any, are isolated and have negative indices. This implies that the sum of
all indexes of the isolated zeroes are negative (if there are zeroes) or zero
(if there are no zeroes). Since Σ has genus zero, by the Poincaré index
theorem the sum of the indices of the singularities of any field of directions
is 2 (hence positive). This contradiction shows that P ν is identically zero.
This implies that Aν = µI, i.e., ν is a umbilical normal direction of X.
We then prove that µ must be constant and, since X(Σ) does not lies in
a hyperplane, we conclude that µ ̸= 0 and X(Σ) lies in a hypersphere of
R2+m. This fact comes from Yau [58] (see Theorem 1, p.351-352) and Chen-
Yano[26] (see Theorem 3.3, p.472-473). Moreover, if H and ν = H/∥H∥,
then X(Σ) is a minimal surface of a hypersphere of R2+m. This comes
from Theorem 2, p.117, of the work of Ferus [37].
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In the case when Σ is f -minimal, i.e., Hf = 0, and the weight f(X) =

F (∥X∥2) satisfies F ′(t) ̸= 0 and 2F ′′(t)+(F ′(t))2 ̸= 0, for every t ∈ R, t ≥
0, the next result follows from Theorem 2.5.

Corollary 2.6. Let X : Σ → R2+m, m ≥ 1, be an immersion of a sur-
face homeomorphic to the sphere. Assume that all the following assertions
holds:

i) X is f -minimal, i.e., Hf = 0, for a radial weight f(X) = F (∥X∥2),
where F : R → R is a function of class C2 such that F ′(t) ̸= 0 and
2F ′′(t) + (F ′(t))2 ̸= 0, for every t ∈ R, t ≥ 0.

ii) There exists an unitary normal vector field ν ∈ TΣ⊥ such that
∇⊥ν = 0.

iii) There exists a non-negative locally Lp function φ : Σ → R, p >

2, and a locally integrable function G : [0,∞) → [0,∞) satisfying
lim supt→0G(t)/t <∞, such that(

∥X∥2 −
(

∥H∥
2F ′(∥X∥2)

)2
)(

|⟨H, ν⟩|
2F ′(∥X∥2)

)2

≤ φ2G(∥Φν∥)2. (2.8)

Then X(Σ) is contained in a round hypersphere of R2+m of radius R,
where R is the solution of the equation

F ′(R2)R2 = 1,

and centered at the origin. Moreover, if H ̸= 0 and ν = H/∥H∥, then
X(Σ) is a minimal surface of a round hypersphere of R2+m with the same
properties.

Here ∥Φν∥ is the matrix norm of Φν = Aν − (trAν/2)I, where Aν is
the shape operator of the second fundamental form of X relative to ν, trAν

is its trace, and I : TΣ → TΣ is the identity operator.

Since self-shrinkers are f -minimal surfaces for the weight f(X) = ∥X∥2
4 ,

applying Corollary 2.6 to F (t) = t/4, we obtain
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Corollary 2.7. Let X : Σ → R2+m, m ≥ 1, be an immersed self-shrinker
homeomorphic to the sphere. Assume there exists an unitary normal vector
field ν ∈ TΣ⊥ such that ∇⊥ν = 0. If there exists a non-negative locally Lp

function φ : Σ → R, p > 2, and a locally integrable function G : [0,∞) →
[0,∞) satisfying lim supt→0G(t)/t <∞, such that(

∥X∥2 − 4∥H∥2
)
|⟨H, ν⟩|2 ≤ φ2G(∥Φν∥)2,

then X(Σ) is contained in a round hypersphere of R2+m of radius 2 and
centered at the origin.

Here ∥Φν∥ is the matrix norm of Φν = Aν − (trAν/2)I, where Aν is
the shape operator of the second fundamental form of X relative to ν, trAν

is its trace, and I : TΣ → TΣ is the identity operator.

If we consider the case of codimension one in Corollary 2.7, then we
obtain Theorem 2.1:

Corollary 2.8 (Theorem 2.1). Let X : Σ → R3 be an immersed self-
shrinker homeomorphic to the sphere. If there exists a non-negative locally
Lp function φ : Σ → R, p > 2, and a locally integrable function G :

[0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(∥X∥2 − 4H2)H2 ≤ φ2G(∥Φ∥)2,

then X(Σ) is a round sphere of radius 2 and centered at the origin.
Here ∥Φ∥ denotes the matrix norm of Φ = A − (H/2)I, where A is

the shape operator of the second fundamental form of X, H is its non-
normalized mean curvature, and I is the identity operator of TΣ.

For surfaces with parallel weighted mean curvature in the Gaussian
space, we have

Corollary 2.9. Let X : Σ → (R2+m, ⟨·, ·⟩, e−∥X∥2/4), m ≥ 1, be an im-
mersion of a surface homeomorphic to the sphere into the Gaussian space.
Assume that all the following assertions holds:

i) X has parallel weighted mean curvature Hf , i.e., ∇⊥Hf = 0.
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ii) There exists an unitary normal vector field ν ∈ TΣ⊥ such that
∇⊥ν = 0.

iii) There exists a non-negative locally Lp function φ : Σ → R, p >

2, and a locally integrable function G : [0,∞) → [0,∞) satisfying
lim supt→0G(t)/t <∞, such that

(∥X∥2 − 4∥Hf −H∥2)⟨H, ν⟩2 ≤ φ2G(∥Φν∥)2, (2.9)

Then X(Σ) is contained in a round hypersphere of R2+m. Moreover,
if H ̸= 0 and ν = H/∥H∥, then X(Σ) is a minimal surface of a round
hypersphere of R2+m of radius√

⟨Hf , ν⟩2 + 4− ⟨Hf , ν⟩.

Here ∥Φν∥ is the matrix norm of Φν = Aν − (trAν/2)I, where Aν is
the shape operator of the second fundamental form of X relative to ν, trAν

is its trace, and I : TΣ → TΣ is the identity operator.

In particular, for λ-surfaces, we obtain

Corollary 2.10. Let X : Σ → R3 be a immersed λ-surface homeomorphic
to the sphere. If there exists a non-negative locally Lp function φ : Σ →
R, p > 2, and a locally integrable function G : [0,∞) → [0,∞) satisfying
lim supt→0G(t)/t <∞, such that(

∥X∥2 − 4(λ−H)2
)
H2 ≤ φ2G(∥Φ∥)2,

then X(Σ) is a round sphere of radius
√
λ2 + 4−λ and center at the origin.

Here ∥Φ∥ denotes the matrix norm of Φ = A − (H/2)I, where A is
the shape operator of the second fundamental form of X, H is its non-
normalized mean curvature, and I is the identity operator of TΣ.

Remark 2.11. In the proof of Corollary 2.9, since the codimension can
be m ≥ 2, we have that the spheres ∥X∥2 = constant and S1+m(x0, R)

could be different. In this case we will have

X(Σ) ⊂ S1+m(x0, R) ∩ S1+m(0, ∥X∥),

where this intersection is, by its turn, a m-dimensional sphere.
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3 Self-shrinkers of extrinsic curvature flows

In this section, we continue the work done in [6] presenting results in
the same spirit of Theorem 2.1 to other famous curvature flows, as the
flow by the powers of Gaussian curvature K, the flow by the powers of the
harmonic mean curvature K/H and the flow by the powers of the mean
curvature H. All these flows can be seen as particular cases of the general
curvature flow, as follows.

Given a initial immersion X0 : Σ → R3 of a two-dimensional surface,
we say that the evolution of X0(Σ) by the curvature is a smooth one-
parameter family of immersions X : Σ× [0, T ) → R3 satisfying the initial
value problem 

∂X

∂t
=W (k1, k2)N,

X(·, 0) = X0,
(3.1)

where k1 and k2 are the principal curvatures of the immersions X, N is
their unitary normal vector fields, and W ∈ C1(R2). It is known this flow
will be parabolic if and only if

∂W

∂k1
· ∂W
∂k2

> 0. (3.2)

The more important curvature flows are those whose function W is
a combination of the mean curvature H = k1 + k2 and the Gaussian
curvature K = k1k2. Among these we can cite the mean curvature flow,
for W (k1, k2) = H, the Gaussian curvature flow W (k1, k2) = K, and the
harmonic curvature flow, for W (k1, k2) = K/H. These curvature flows has
been studied by many authors in the last three decades, see [39], [56], [57],
[11], [12], [15], [16], [48] and references therein.

In the study the curvature flows, the self-similar solutions play an im-
portant role since its was proved that, under some convexity conditions,
the solutions of the flow, when suitably normalized, converge to a self-
similar solution. A solution of the curvature flow (3.1) is said self-similar
if each Σt = X(Σ, t) is an homothety, or a translation, or even a rotation of
Σ0 = X0(Σ). The homothetic self-similar solutions are said self-shrinkers
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(or shrinking self-similar solutions, or shrinking homothetic solutions) if
the solution shrinks homothetically from Σ0.

If W is a homogeneous function of degree β > 0, i.e., W (ak1, ak2) =

aβW (k1, k2), a > 0, then it can be proved that a shrinking self-similar
solution of a curvature flow satisfies the equation

W (k1, k2) = −λ⟨X,N⟩, λ ∈ (0,∞). (3.3)

Changing the variables x1 = k1 + k2 and x2 = (k1 − k2)
2 we can write

W (k1, k2) = Ψ(x1, x2) = Ψ(k1 + k2, (k1 − k2)
2) = Ψ(H,H2 − 4K), (3.4)

where K = k1k2 is the Gaussian curvature of the immersion X and H =

k1 + k2 is its mean curvature. Therefore, the equation (3.3) becomes

Ψ(H,H2 − 4K) = −λ⟨X,N⟩, λ ∈ (0,∞). (3.5)

The main result in this subject is the following

Theorem 3.1 (Alencar-Silva Neto-Zhou). Let X : Σ → R3 be a closed,
immersed surface of genus zero satisfying (3.5), where Ψ : R×[0,+∞) → R
is a C1 function satisfying ∂Ψ

∂x1
̸= 0. If there exists a non-negative function

φ ∈ Lp(Σ), p > 2, and a locally integrable function G : [0,∞) → [0,∞)

satisfying lim supt→0G(t)/t <∞, such that

H2(∥X∥2 − ⟨X,N⟩2) ≤ φ2G(∥Φ∥)2, (3.6)

then X(Σ) is a round sphere centered at the origin and radius satisfying
the equation

λR = Ψ

(
2

R
, 0

)
.

Here ∥Φ∥ denotes the matrix norm of Φ = A−(H/2)I, where A is the shape
operator of the second fundamental form of X, H is its non-normalized
mean curvature, and I is the identity operator of TΣ.

Remark 3.2. Theorem 3.1 cannot be derived from Theorem 2.5 of the
previous section since the only curvature flow that can be expressed using
weighted geometry is the mean curvature flow.
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Remark 3.3. Since the function φ is assumed to be only Lp, it is allowed
to be infinity in some points. In particular, it is possible to have

lim
p→p0

φ(p)G(∥Φ(p)∥) > 0

for umbilical points p0 ∈ Σ despite G(∥Φ(p0)∥) = G(0) = 0. Therefore, the
inequality (3.6) does not imply necessarily that H2(∥X∥2 − ⟨X,N⟩2) = 0

at umbilical points.

Remark 3.4. Notice that, since H2−4K = (k1−k2)2 ≥ 0, the inequality

K ≤ 1

4
H2

holds for every surface in R3. As it was shown in the Remark 1.4 of [6],
inequality (3.6) gives the existence of a function ψ, which can be chosen
satisfying ψ2 < ε for every given ε > 0 arbitrarily small, such that 1/ψ ∈
Lp(Σ), p > 2, and

K ≤ 1

4
(1− ψ2)H2.

Remark 3.5. The hypothesis (3.6) of Theorem 3.1 is necessary. In fact,
we prove in [8] that, if there exists non-spherical genus zero rotational
surface which is the solution of (3.5), then (3.6) does not hold.

Remark 3.6. The function W (k1, k2) is homogeneous of degree β ∈ R, if
and only if the function Ψ satisfies

Ψ(ax1, a
2x2) = aβΨ(x1, x2), a > 0. (3.7)

By an abuse of notation, we will call Ψ a homogeneous function of degree
β ∈ R if Ψ satisfies (3.7). If Ψ is homogeneous of degree β ̸= −1 with
Ψ(1, 0) > 0, and λ > 0, then the radius of the sphere of Theorem 3.1 is
given by

R =
[
λ−12βΨ(1, 0)

] 1
β+1

.

Remark 3.7. The flow (3.1) is a (weakly) parabolic equation if and only
if

∂W

∂k1
· ∂W
∂k2

> 0 (≥ 0),
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or equivalently (
∂Ψ

∂x1

)2

− 4x2

(
∂Ψ

∂x2

)2

> 0 (≥ 0).

Notice the hypothesis ∂Ψ
∂x1

̸= 0 of Theorem 3.1 assures the parabolicity
of the flow near the umbilical points (x2 = 0), but this result holds even
when the flow is not parabolic.

Our first consequence is for the α-mean curvature flow, α ∈ R\{0, 1},

∂X

∂t
= HαN.

This flow is parabolic forH > 0. The case when α = 1 is the so called mean
curvature flow, which is parabolic without any additional assumption. This
case was dealt by the authors in [6].

Schulze, see [53], proved that closed (weakly) convex hypersurfaces of
Rn+1 converges to a point if α ∈ (0, 1) (α ≥ 1) and Schnürer, see [52],
and Schulze, see [54], proved that closed convex surfaces of R3 converges
to a round point for 1 ≤ α ≤ 5. For general speeds of higher homogeneity,
Andrews, see [16], proved that the flow of a closed convex surface converges
to a round point provided it satisfies an initial pinching condition.

The shrinking self-similar solutions of the α-mean curvature flow satisfy
the equation

Hα = −λ⟨X,N⟩, λ ∈ (0,∞).

Our result characterizes the sphere as the only mean convex (i.e., H ̸= 0),
genus zero, closed shrinking self-similar solution of the α-mean curvature
flow under an upper pinching curvature condition. Notice that the mean
convex assumption is weaker than convexity, since mean convexity admits
immersed surfaces and surfaces with K ≤ 0.

Corollary 3.8. Let X : Σ → R3 be a closed, homeomorphic to the sphere,
immersed, mean convex, two-dimensional shrinking self-similar solution
of the α-mean curvature flow, for α ∈ R\{−1, 0, 1}. If there exists a non-
negative function φ ∈ Lp(Σ), p > 2, and a locally integrable function
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G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

H2(∥X∥2 − ⟨X,N⟩2) ≤ φ2G(∥Φ∥)2, (3.8)

then X(Σ) is a round sphere of radius (2αλ−1)
1

α+1 and center at the origin.
Here ∥Φ∥ denotes the matrix norm of Φ = A − (H/2)I, where A is

the shape operator of the second fundamental form of X, H is its non-
normalized mean curvature, and I is the identity operator of TΣ.

Remark 3.9. If α = m
2n−1 ∈ (0, 1), n,m ∈ N, then the hypothesis of mean

convexity in Corollary 3.8 is not necessary. Notice that in this case the
flow is only weakly parabolic, becoming degenerate for the points when
H = 0.

Remark 3.10. Drugan, Lee and Wheeler [34] proved that the spheres are
the only closed self-shrinkers for the inverse mean curvature flow (i.e., for
α = −1) without any additional assumption, solving the problem in this
case.

The next application of Theorem 3.1 is for the α-harmonic mean cur-
vature flow

∂X

∂t
=

(
K

H

)α

N,

whose shrinking self-similar solitons satisfy the equation(
K

H

)α

= −λ⟨X,N⟩, λ ∈ (0,∞).

If α ∈ (0,∞), then this flow is (weakly) parabolic for (weakly) convex
surfaces, being degenerate for the points whereK = 0. If we consider values
of α such that K can assume negative values, as α = m

2n−1 , m, n ∈ N,
including the classical case of α = 1, then the flow is weakly parabolic for
every surface, being degenerate for the points where K = 0 and singular
for the points where H = 0.

For α = 1, the existence of solutions for closed convex surfaces as initial
data was proved by Andrews, see [11], who also showed that closed convex
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surfaces flowing by the harmonic mean curvature converges to a round
point in finite time (in fact, the result of Andrews holds for a more wide
class of degree one homogeneous functions W ). Dieter, see [33], studied
the convergence of the flow for the degenerate case K ≥ 0 and H > 0, Ca-
puto and Daskalopoulos, see [24], and Daskalopoulos and Sesum, see [32],
studied the highly degenerate case, where K and H can be simultaneously
zero. The case when K < 0 and H < 0 was studied by Daskalopoulos and
Hamilton, see [31].

For α ∈ (0, 1), Anada, see [9], proved the existence of non-round closed
convex self-similar solutions of the α-harmonic mean curvature flow. After
this findings, in a joint work with Tsutsumi, see [10], he also investigated
sufficient conditions for the α-mean curvature flows converge to a round
point.

Our result gives conditions for a closed, mean convex, self-similar so-
lution with genus zero of the m

2n−1 -harmonic mean curvature flow to be a
sphere. We remark here that the powers m

2n−1 ,m, n ∈ N, allows us to work
with surfaces such that K < 0 at some points, but our technique holds for
every α ∈ (0, 1], if we assume that Σ is weakly convex.

Corollary 3.11. Let X : Σ → R3 be a closed, homeomorphic to the
sphere, immersed, mean convex, two-dimensional shrinking self-similar
solution of the α-harmonic mean curvature flow for α = m

2n−1 , where
m,n ∈ N and m

2n−1 ≤ 1. If there exists a non-negative function φ ∈ Lp(Σ),

p > 2, and a locally integrable function G : [0,∞) → [0,∞) satisfying
lim supt→0G(t)/t <∞, such that

H2(∥X∥2 − ⟨X,N⟩2) ≤ φ2G(∥Φ∥)2, (3.9)

then X(Σ) is a round sphere of radius (2
m

2n−1λ)−
2n−1

m−2n+1 , centered at the
origin, if (m,n) ̸= (1, 1), and for any radius R > 0, centered at the origin,
with λ = 1

2 , if (m,n) = (1, 1).

Here ∥Φ∥ denotes the matrix norm of Φ = A − (H/2)I, where A is
the shape operator of the second fundamental form of X, H is its non-
normalized mean curvature, and I is the identity operator of TΣ.
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The last classical flow we will discuss here and obtain consequences of
Theorem 3.1 is the α-Gaussian curvature flow

∂X

∂t
= KαN,

whose shrinking self-similar solutions satisfy the equation

Kα = −λ⟨X,N⟩, λ ∈ (0,∞).

This flow is (weakly) parabolic if K > 0 (K ≥ 0), being degenerate for the
points where K = 0.

When α = 1, this flow is called Gaussian curvature flow, and was
first introduced by Firey in 1974, see [38], as a model of the wearing
process of convex rolling stones on a beach. He proved also that closed
convex surfaces under this flow converges to a round point when the initial
surface is symmetric about the origin. Tso, see [55], for α = 1, and Chow,
see [29], for α = 1/n, proved the convergence to a point of a closed convex
hypersurfaces of Rn+1 under the flow. Andrews, see [13], proved that,
for α = 1/(n + 2), closed convex hypersurfaces evolving under the flow
converges to an ellipsoid. We observe that Calabi, see [22], early proved
that the ellipsoids are the only closed hypersurfaces satisfying the equation
of the self-similar solutions of the 1

n+2 -Gaussian curvature flow. The works
of Andrews, see [14], [17], and Guan and Ni, see [41], proved that the flow
converges to a self-similar solution for every α ≥ 1/(n+2). To conclude the
analysis of the case when α ≥ 1/(n+2), Brendle, Choi and Daskalopoulos,
see [21], proved that the only closed self-similar solutions of the α-Gaussian
curvature flow for α > 1/(n+2) are the round spheres. In his turn, if α < 0,

then Gerhardt, see [40], proved that the only closed convex self-similar
solution of the α-Gaussian curvature flow is a round sphere. Moreover, he
proved that the flow converges to a sphere after rescaling.

On the other hand, Andrews, see [14], proved the existence of non-
spherical closed convex self-similar solutions of the α-Gaussian curvature
flow for small α > 0. In particular, in dimension 2, for α ∈ (0, 1/10). This
shows that if we want to characterize the sphere as the only self-similar
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solution of the α-Gauss curvature flow for small values of α > 0, then we
will need some additional assumption.

Our result provides sufficient conditions for a self-similar solution of
the α-Gaussian curvature flow, α ∈ (0, 1/4), to be a round sphere.

Corollary 3.12. Let X : Σ → R3 be a closed, convex, two-dimensional
shrinking self-similar solution of the α−Gaussian curvature flow for α ∈
(0, 1/4). If there exists a non-negative function φ ∈ Lp(Σ), p > 2, and a lo-
cally integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <

∞, such that
H2(∥X∥2 − ⟨X,N⟩2) ≤ φ2G(∥Φ∥)2 (3.10)

then X(Σ) is a round sphere of radius λ−
1

2α+1 and center at the origin.
Here ∥Φ∥ denotes the matrix norm of Φ = A − (H/2)I, where A is

the shape operator of the second fundamental form of X, H is its non-
normalized mean curvature, and I is the identity operator of TΣ.

Remark 3.13. Since there are examples of closed convex self-similar solu-
tions of the α-Gaussian curvature flow for α ∈ (0, 1/10), given by Andrews,
see [14], at least in this cases some additional hypothesis like (3.10) is nec-
essary to obtain the conclusions of Corollary 3.12.

Remark 3.14. Corollary 3.12 holds in a more general setting: if we choose
values of α which allows negative values ofK, as for example α = m

2n−1 ≤ 1,

m, n ∈ N, then we can assume only that Σ is a closed mean convex surface
with genus zero to obtain the same conclusion, despite the flow is not
parabolic in this case.

In order to illustrate the scope of situations to which the Theorem 3.1
can be applied in the context of the curvature flows, we give here a list of
examples of homogeneous functions W (k1, k2) such that the flow (3.1) is
parabolic including negative values of K.

(i) W (k1, k2) = aH2 + bK, a, b ∈ R. The flow is parabolic for

K > −2a(2a+ b)

b2
H2.
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In this case, ∂Ψ
∂x1

̸= 0 if and only if H ̸= 0, i.e., the surface is mean
convex.

As a particular situation, we have W (k1, k2) = |A|2 = k21 + k22, by
taking a = 1 and b = −2. In this case, the flow is parabolic for
K > 0, i.e., for convex surfaces. This flow was studied by Schnürer
in [52].

(ii) W (k1, k2) = aH2α + bKα, a, b > 0, α = m
2n−1 ≥ 1,m, n ∈ N. The

flow is parabolic for

4a2 + 2ab

(
K

H2

)α−1

+ b2
(
K

H2

)2α−1

> 0.

In this case, ∂Ψ
∂x1

̸= 0 if and only if H ̸= 0, i.e., the surface is mean
convex.

(iii) W (k1, k2) = H
2
3 +bK

1
3 , b ∈ (0, 25/3). The flow is parabolic for K ̸= 0

and H ̸= 0. In this case, ∂Ψ
∂x1

̸= 0 everywhere and it is singular for
K = 0 and H = 0.

4 Warped product manifolds

In this section we present some results proved by the first and the
second authors in [7] which generalize the Eschenburg-Tribuzy theorem for
the more general class of three-dimensional Riemannian manifolds M3 =

I × S2, where I = (0, b) or I = (0,∞), with the metric

⟨·, ·⟩ = dt2 + h(t)2dω2, (4.1)

where h : I → R is a smooth function, called warping function, and dω2

denotes the canonical metric of the 2-dimensional round sphere S2. With
the metric (4.1), the product M3 = I × S2 is called a warped product
manifold and generalizes the space forms with constant sectional curvature.
In fact, the metrics of the space forms of constant sectional curvature c ∈ R
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can be written in polar coordinates as in (4.1), where
h(t) = t for R3,

h(t) =
1√
c
sin(

√
ct) for S3(c),

h(t) =
1√
−c

sinh(
√
−ct) for H3(c).

The warped product manifold M3 has two different sectional curvatures
which depend only on the parameter t, one tangent to the slices {t} × S2,
denoted by Ktan(t), and other relative to the planes which contains the
radial direction ∂t, which de denote by Krad(t). In terms of the warping
function, we can write

Ktan(t) =
1− h′(t)2

h(t)2
and Krad(t) = −h

′′(t)

h(t)
. (4.2)

These manifolds were first introduced by Bishop and O’ Neill in 1969,
see [18], and is having increasing importance due to its applications as
model spaces in general relativity. Part of these applications comes from
the metrics which are solutions of the Einstein equations, as the de Sitter-
Schwarzschild metric and Reissner-Nordstrom metric, which we introduce
later.

Applying the Hopf differential to Theorem 1.1, the main result of
this section is the following generalization of Theorem 1.3 for a class of
warped product manifolds which contains the de Sitter-Schwarzschild and
the Reissner-Nordstrom manifolds:

Theorem 4.1 (Alencar-Silva Neto). Let Σ be a surface, homeomorphic to
the sphere, immersed in a warped product manifold M3 = I×S2, with mean
curvature function H. If there exists a non-negative Lp, p > 2, function
f : Σ → R such that

|dH + (Ktan(t)−Krad(t))νdt|

≤ f
√
H2 −K +Ktan(t)− (1− ν2)(Ktan(t)−Krad(t)),

(4.3)
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then Σ is totally umbilical.
Moreover, if Ktan(t) ̸= Krad(t), except possibly for a discrete set of

values t ∈ I, and Σ has constant mean curvature, then Σ is a slice.

Remark 4.2. Actually, some additional hypothesis as (4.3) is needed in
order to classify the slices as the only constant mean curvature spheres.
In fact, it was observed by Brendle (see [19], Theorem 1.5, p. 250) that
a result of Pacard and Xu (see [49], Theorem 1.1, p. 276) implies that
in some warped product manifolds there are small spheres with constant
mean curvature which are not umbilical.

Remark 4.3. To obtain the slice in the second part of Theorem 4.1,
the assumption over M3 that Ktan(t) ̸= Krad(t), except possibly for a
discrete set of values t ∈ I, is necessary. In fact, if Ktan(t) = Krad(t)

for some interval (t0, t1) ⊂ I, then all the sectional curvatures of M3 will
depend only on t. This will imply, by the classical Schur’s Theorem, that
M̃3 := (t0, t1) × S2 has constant sectional curvature. In this case, there
exists spheres, other than the slices, with constant mean curvature (in fact,
the geodesic spheres centered in some point of M̃3).

Two of the most famous examples of warped product manifolds are the
de Sitter-Schwarzschild manifolds and the Reissner-Nordstrom manifolds,
which we describe below.

Definition 4.4 (The de Sitter-Schwarzschild manifolds). Let m > 0, c ∈
R, and

(s0, s1) = {r > 0; 1−mr−1 − cr2 > 0}.

If c ≤ 0, then s1 = ∞. If c > 0, assume that cm2 < 4
27 . The de Sitter-

Schwarzschild manifold is defined by M3(c) = (s0, s1)× S2 endowed with
the metric

⟨·, ·⟩ = 1

1−mr−1 − cr2
dr2 + r2dω2.

In order to write the metric in the form (4.1), define F : [s0, s1) → R by

F ′(r) =
1√

1−mr−1 − cr2
, F (s0) = 0.
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Taking t = F (r), we can write ⟨·, ·⟩ = dt2+h(t)2dω2, where h : [0, F (s1)) →
[s0, s1) denotes the inverse function of F. The function h clearly satisfies

h′(t) =
√

1−mh(t)−1 − ch(t)2, h(0) = s0, and h′(0) = 0. (4.4)

For these manifolds, we have

Corollary 4.5 (The de Sitter-Schwarzschild manifolds). Let Σ be a sur-
face, homeomorphic to the sphere, immersed in the de Sitter-Schwarzschild
manifold, with constant mean curvature. If there exists a non-negative Lp,

p > 2, function f : Σ → R such that

|dt| ≤ f

√
H2 −K + c+

m(3ν2 − 1)

2h(t)3
,

then Σ is a slice.
Here, K is the Gaussian curvature of Σ, ν = ⟨∇t,N⟩ is the angle

function, and N is the unitary normal vector field of Σ in the de Sitter-
Schwarzschild manifold.

Definition 4.6 (The Reissner-Nordstrom manifolds). The Reissner- Nord-
strom manifold is defined by M3 = (s0,∞)× S2, with the metric

⟨·, ·⟩ = 1

1−mr−1 + q2r−2
dr2 + r2dω2,

where m > 2q > 0 and s0 = 2q2

m−
√

m2−4q2
is the larger of the two solutions

of 1 −mr−1 + q2r−2 = 0. In order to write the metric in the form (4.1),
define F : [s0,∞) → R by

F ′(r) =
1√

1−mr−1 + q2r−2
, F (s0) = 0.

Taking t = F (r), we can write ⟨·, ·⟩ = dt2 + h(t)2dω2, where h : [0,∞) →
[s0,∞) denotes the inverse function of F. The function h clearly satisfies

h′(t) =
√
1−mh(t)−1 + q2h(t)−2, h(0) = s0, and h′(0) = 0. (4.5)
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For these manifolds, we have

Corollary 4.7 (The Reissner-Nordstrom manifolds). Let Σ be a surface,
homeomorphic to the sphere, immersed in the Reissner-Nordstrom man-
ifold, with constant mean curvature. If there exists a non-negative Lp,

p > 2, function f : Σ → R such that

|dt| ≤ f

√
H2 −K +

m(3ν2 − 1)

2h(t)3
+
q2(1− 2ν2)

h(t)4
,

then Σ is a slice.
Here, K is the Gaussian curvature of Σ, ν = ⟨∇t,N⟩ is the angle

function, and N is the unitary normal vector field of Σ in the Reissner-
Nordstrom manifold.

Remark 4.8. Since the warped product manifold is smooth at t = 0 if
and only if h(0) = 0, h′(0) = 1, and all the even order derivatives are
zero at t = 0, i.e., h(2k)(0) = 0, k > 0, see [50], Proposition 1, p. 13, we
can see the de Sitter-Schwarzschild manifolds and the Reissner-Nordstrom
manifolds are singular at t = 0.
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