HYPERSURFACES WHOSE TANGENT GEODESICS OMIT A NONEMPTY SET

Hilário Alencar and Katia Frensel

Dedicated to Manfredo P. do Carmo on his sixtieth birthday

1. Introduction

Let Q_{c}^{n+1} be an $n+1$-dimensional, simply-connected, complete Riemannian manifold with constant sectional curvature c. Let M^{n} be an n-dimensional connected manifold and $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an immersion. For every point $p \in M^{n}$, let $\left(Q_{c}^{n}\right)_{p}$ be the totally geodesic hypersurface of Q_{c}^{n+1} tangent to $x\left(M^{n}\right)$ at $x(p)$.

We will denote by

$$
W=Q_{c}^{n+1} \mid \bigcup_{p \in M}\left(Q_{c}^{n}\right)_{p}
$$

the set of points which are omitted by the totally geodesic hypersurfaces tangent to $x\left(M^{n}\right)$. In this work we study the immersions for which the set W is nonempty.

The first known result in this direction is due to Halpern. He proved in [6] that every compact hypersurface immersed in the euclidean space with nonempty W is diffeomorphic to the sphere and it is, in fact, embedded. We show that the same happens when the ambient space is Q_{c}^{n+1}, c arbitrary (see Proposition 4.1). If, in addition, the immersion is isometric with constant mean curvature, we prove that $x\left(M^{n}\right)$ is, actually, a geodesic sphere (see Theorem 4.2). The case when x is minimal, was proved by Pogorelov in [11].

Halpern also proved in [6] that if M^{n} is compact and $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ is an immersion with nonempty W, then W is, in fact, open. In the case M^{n} is complete noncompact there are several examples where the set W is nonempty, but not open. One such example is the hyperboloid of one sheet in \mathbb{R}^{3}, for which the set W consists of a single point. However, Hasanis and Koutroufiots proved in [7] that if an immersion $x: M^{2} \rightarrow Q_{c}^{3}, c \geq 0$, is minimal with nonempty W, then x is totally geodesic. In particular, W is open. The proof of this result uses
strongly the hypothesis that M has dimension two. We show that the same holds for arbitrary dimensions if we assume, in addition, that the set W is open (Theorem 3.1). Recently, the first author, in his Doctoral thesis at IMPA, gave examples of nontotally geodesics minimal hypersurfaces in $\mathbb{R}^{2 n}, n \geq 4$, with nonempty W.

This paper is organized as follows. In section 2 , we extend for Q_{c}^{n+1}, the notions of position vector and support function. This is essentially known (see, for instance, Heintze [8]) but, since we need the details, we will present a full exposition. A geometric interpretation of the support function is also presented in this section. In section 3, we study minimal immersions with nonempty W. We prove Theorem (3.1) above and show that every minimal hypersurface in $Q_{c}^{n+1}, c \leq 0$, with nonempty W is stable. In section 4, we study the compact hypersurfaces in Q_{c}^{n+1} with nonempty W.

We would like to thank M. P. do Carmo for suggesting this topic to us and for some ideas that lead us to Theorem (3.1).

2. Support Function in Spaces of Constant Curvature

Let M^{n} be an oriented Riemannian manifold, and let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an isometric immersion. Given $p_{0} \in \mathbb{R}^{n+1}$, let $X(p)=p-p_{0}$ be the position vector with origin p_{0}. The support function $g: M^{n} \rightarrow \mathbb{R}$ of the immersion x is given by

$$
g(p)=\langle x(p), N(p)\rangle
$$

where N is a unit normal vector field of x. We will extend, for $Q_{c}^{n+1}, c \neq 0$, the notions of position vector and support function.

Let S_{c} be a solution of the equation $y^{\prime \prime}+c y=0$, with initial conditions $y(0)=0$ and $y^{\prime}(0)=1$. Then

$$
S_{c}(r)= \begin{cases}r, & \text { if } \quad c=0 \\ \sin (\sqrt{c} r) / \sqrt{c}, & \text { if } \quad c>0 \\ \sinh (\sqrt{-c} r) / \sqrt{-c}, & \text { if } \quad c<0\end{cases}
$$

For every point $p_{0} \in Q_{c}^{n+1}$, we will consider the function $r(\cdot)=d\left(\cdot, p_{0}\right)$, where d is the distance function of Q_{c}^{n+1}, and we will denote by $\operatorname{grad} r$ the gradient of the function r in Q_{c}^{n+1}. We know that when $c=0$ the position vector with origin
p_{0} is given by $X(p)=S_{0}(r)$ grad r. By analogy, the vector field, in Q_{c}^{n+1}, $X(p)=S_{c}(r) \operatorname{grad} r$ will be called position vector with origin p_{0}. When $c>0$, the distance function is differentiable in $Q_{c}^{n+1} /\left\{p_{0},-p_{0}\right\}$. Therefore, in this case, the position vector with origin p_{0} is differentiable in $Q_{c}^{n+1} \mid\left\{p_{0},-p_{0}\right\}$.

Let M^{n} be an oriented Riemannian manifold, $x: M^{n} \rightarrow Q_{c}^{n+1}$ an isometric immersion, and N an unit normal vector field of x. As in the case $c=0$, the function $g: M^{n} \rightarrow \mathbb{R}$ defined by $g=\langle X, N\rangle$, where X is the position vector with origin p_{0}, will be called the support function of the immersion x. In the case $c>0$, this function is differentiable if $x\left(M^{n}\right) \subseteq Q_{c}^{n+1} \mid\left\{p_{0},-p_{0}\right\}$.

For the case $c=0,|g(p)|, p \in M^{n}$, is the distance from p_{0} to the tangent hyperplane to $x\left(M^{n}\right)$ at $x(p)$. We will now give a geometric interpretation of the support function g for $c \neq 0$ that generalizes the above.

In the case $c>0$, we will assume that Q_{c}^{n+1} is the sphere of radius $1 / \sqrt{c}$ in \mathbb{R}^{n+2}. Then, $|g(p)|, p \in M^{n}$, is the euclidean distance from the point p_{0} to the hyperplane which contains the totally geodesic hypersurface tangent to $x\left(M^{n}\right)$ at $x(p)$. In fact, since

$$
\begin{equation*}
p_{0}=\cos (\sqrt{c} r(p)) p-\frac{\sin (\sqrt{c} r(p))}{\sqrt{c}} \operatorname{grad} r(p) \tag{1}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\langle p_{0}, N(p)\right\rangle=-\frac{\sin (\sqrt{c} r(p))}{\sqrt{c}}\langle\operatorname{grad} r(p), N(p)\rangle=-g(p) . \tag{2}
\end{equation*}
$$

So $|g(p)|=\left|\left\langle p_{0}, N(p)\right\rangle\right|$.
In the case $c<0$, let L^{n+2} be the euclidean space \mathbb{R}^{n+2} endowed with the Riemannian pseudo-metric $\langle\rangle\rangle$, defined by

$$
\langle\langle v, w\rangle\rangle=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{n+1} w_{n+1}-v_{n+2} w_{n+2},
$$

where $v=\left(v_{1}, \ldots, v_{n+2}\right)$ and $w=\left(w_{1}, \ldots, w_{n+2}\right)$ are vectors in \mathbb{R}^{n+2}. Let $\mathbb{H}^{n+1}(c)$ be the hypersurface of L^{n+2} given by

$$
\mathbb{H}^{n+1}(c)=\left\{v \in L^{n+2} ; v_{n+2}>0 \text { and }\langle\langle v, v\rangle\rangle=\frac{1}{c}\right\} .
$$

It is well known that $\mathbb{H}^{n+1}(c)$ with the induced metric is a model of the hyperbolic space Q_{c}^{n+1}, called hyperboloid model.

We can assume, without loss of generality, that $p_{0}=(0, \cdots, 0,1 / \sqrt{-c})$. In this case, the euclidean distance from p_{0} to the hyperplane that passes through the
origin of \mathbb{R}^{n+2} and contains the totally geodesic hypersurface, $\left(Q_{c}^{n}\right)_{p}$, tangent to $x\left(M^{n}\right)$ at $x(p), p \in M^{n}$, is given by

$$
\frac{|g(p)|}{\sqrt{1+2 g(p)^{2}}} .
$$

In fact, since

$$
\begin{equation*}
p_{0}=\cosh (\sqrt{-c} r(p)) p-\frac{\sinh (\sqrt{-c} r(p))}{\sqrt{-c}} \operatorname{grad} r(p) \tag{3}
\end{equation*}
$$

we have that

$$
\begin{equation*}
\left\langle\left\langle p_{0}, N(p)\right\rangle\right\rangle=-g(p) \tag{4}
\end{equation*}
$$

Let $N(p)=\left(N_{1}, \ldots, N_{n+1}, N_{n+2}\right)$. Then $\left\langle\left\langle p_{0}, N(p)\right\rangle\right\rangle=-N_{n+2}$ and $\left\langle p_{0}, N(p)\right\rangle=$ N_{n+2}, where \langle,$\rangle is the usual inner product. Since \langle\langle n(p), N(p)\rangle\rangle=1,\langle\langle p, N(p)\rangle\rangle=$ 0 and $\langle\langle v, N(p)\rangle\rangle=0$ for every $v \in T_{p}\left(Q_{c}^{n}\right)_{p}$, we have that

$$
\bar{N}(p)=\frac{\left(N_{1}, \ldots, N_{n+1}, N_{n+2}\right)}{\sqrt{1+2 N_{n+2}^{2}}}
$$

is an unit vector in \mathbb{R}^{n+2} orthogonal to the hyperplane that passes through the origin of \mathbb{R}^{n+2} and contains $\left(Q_{c}^{n}\right)_{p}$. Therefore, the euclidean distance from p_{0} to this hyperplane is given by

$$
\begin{equation*}
\left|\left\langle p_{0}, \bar{N}(p)\right\rangle\right|=\left|\frac{-N_{n+2}}{\sqrt{1+2 N_{n+2}^{2}}}\right|=\frac{|g(p)|}{\sqrt{1+2 g(p)^{2}}} \tag{5}
\end{equation*}
$$

and this proves our assertion.
We now assume that the immersion $x: M^{n} \rightarrow Q_{c}^{n+1}$ has constant mean curvature H. Setting $\theta_{c}=S_{c}^{\prime}$, we have in the case $c=0$ that $\Delta g=-\|B\|^{2}$ $g-n H \theta_{c}$. The proposition below says that this equation holds for any c.
2.1 Proposition. Let M^{n} be an oriented Riemannian manifold and let x : $M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion with constant mean curvature H. Then

$$
\Delta g=-\|B\|^{2} g-n H \theta_{c},
$$

where Δ is the Laplacian in M^{n} and $\|B\|$ is the norm of the second fundamental form B of the immersion x.

Proof. The result was proved in [1] for the case $c=0$. If $c>0$ or $c<0$, we have by Lemma (3.3) in [2] that

$$
\Delta f=-\|B\|^{2} f+n c H h
$$

where $f(p)=\left\langle N(p), p_{0}\right\rangle, h(p)=\left\langle p, p_{0}\right\rangle$ and \langle,$\rangle denotes the euclidean and$ Lorentz inner product, respectively. But, from (2) and (4), $g=-f$, and from (1) and (3), $\theta_{c}=c h$. Therefore

$$
\Delta g=-\|B\|^{2} g-n H \theta_{c}
$$

The mean value equality (6) below generalizes for $c \neq 0$ the Minkowski's equality in $\mathbb{R}^{n+1}\left(c=0, \theta_{c}=1\right)$. For completeness, we will present a complete proof.
2.2 Proposition. (Heintze [8], pag. 19). Let M^{n} be a compact Riemannian manifold and let $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion. Then

$$
\begin{equation*}
\int_{M} H g d A=-\int_{M} \theta_{c} d A \tag{6}
\end{equation*}
$$

where H is the mean curvature of x.

Proof. Let X be the position vector with origin p_{0} and e_{1}, \ldots, e_{n} be a local orthonormal frame of $T M$. Denote by div_{M} the divergence in M^{n}, and by X^{t} and X^{N} the tangent and normal components, respectively, of the vector X.

Since $\left\langle X^{N}, e_{i}\right\rangle=0$, we have that $\left\langle\bar{\nabla}_{e_{i}} X^{N}, e_{i}\right\rangle=-\left\langle X,\left(\bar{\nabla}_{e_{i}} e_{i}\right)^{N}\right\rangle$, and so

$$
\begin{aligned}
\operatorname{div}_{M} X^{T} & =\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} X^{T}, e_{j}\right\rangle=\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} X, e_{j}\right\rangle-\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} X^{N}, e_{j}\right\rangle \\
& =\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} X, e_{j}\right\rangle+\sum_{j=1}^{n}\left\langle X,\left(\bar{\nabla}_{e_{j}} e_{j}\right)^{N}\right\rangle,
\end{aligned}
$$

where $\bar{\nabla}$ is the Riemannian connection of Q_{c}^{n+1}.
On the other hand, we have that $\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} X, e_{j}\right\rangle=n \theta_{c}$. In fact,

$$
\begin{aligned}
\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} X, e_{j}\right\rangle & =\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}}\left(S_{c}(r) \operatorname{grad} r\right), e_{j}\right\rangle \\
& =\theta_{c}(r) \sum_{j=1}^{n}\left\langle\operatorname{grad} r, e_{j}\right\rangle^{2}+S_{c}(r) \sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} \operatorname{grad} r, e_{j}\right\rangle .
\end{aligned}
$$

But, as we can see in (Jorge, Koutroufiotis [10], pg. 713), we have that

$$
\begin{equation*}
\left\langle\bar{\nabla}_{v} \operatorname{grad} r, w\right\rangle=\frac{\theta_{c}}{S_{c}}(\langle v, w\rangle-\langle\operatorname{grad} r, v\rangle\langle\operatorname{grad} r, w\rangle) \tag{8}
\end{equation*}
$$

for any vector fields v, w in Q_{c}^{n+1}.
Then, from (7) and (8),

$$
\begin{aligned}
\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} X, e_{j}\right\rangle & =\theta_{c}(r) \sum_{j=1}^{n}\left\langle\operatorname{grad} r, e_{j}\right\rangle^{2}+\theta_{c}(r) \sum_{j=1}^{n}\left(1-\left\langle\operatorname{grad} r, e_{j}\right\rangle^{2}\right) \\
& =n \theta_{c}
\end{aligned}
$$

Thus, since $\sum_{j=1}^{n}\left(\bar{\nabla}_{e_{j}} e_{j}\right)^{N}=H N$,

$$
\operatorname{div}_{M} X^{T}=n \theta_{c}+n H g
$$

By integrating the above expression over M^{n}, we obtain

$$
\int_{M} H g d A=-\int_{M} \theta_{c} d A
$$

This complete the proof.
2.3 Remark. In [8], assuming only that the sectional curvature of the ambient space is bounded above, it is proven that an inequality still holds in the last proposition.

3. Minimal Hypersurfaces with Nonempty W

3.1 Theorem. Let M^{n} be a complete Riemannian manifold and let $x: M^{n} \rightarrow$ Q_{c}^{n+1} be an isometric minimal immersion. If the set W is open and nonempty, then x is totally geodesic.

Proof. Let $p_{0} \in W$ and X be the position vector with origin p_{0}. For each point $p \in M^{n}$, let $N(p)$ be the unit normal vector to $X\left(M^{n}\right)$ at $x(p)$ such that $\langle X(p), N(p)\rangle>0$. This gives M^{n} an orientation, according to which the support function $g=\langle X, N\rangle$ is positive.

Let $d=\inf \left\{g(p) ; p \in M^{n}\right\}$. Assume that there is a point $p \in M^{n}$ such that $g(p)=d$. Since, from (1.2), $\Delta g=-\|B\|^{2} g$, we have $\Delta g \leq 0$. Then, from the Maximum Principle, g is constant equal to d. Thus $\|B\| \equiv 0$, i.e., x is totally geodesic, for $\Delta g=0$ and g vanishes nowhere.

Therefore, the proof will be complete if we show that there is a point $p \in M^{n}$ such that $g(p)=d$. For that, we will consider a sequence of points $\left\{p_{k}\right\}_{k \geq 0}$ in M^{n} such that $g\left(p_{k}\right) \rightarrow d$, when $k \rightarrow \infty$.

We will treat separately the cases $c=0, c>0$ and $c<0$, and we will assume, without loss of generality, that $c=1$, when $c>0$ and $c=-1$ when $c<0$.

Case $c=0$. For each point p_{k}, we will consider the point q_{k}, intersection of $T_{p_{k}} M^{n}$ with the perpendicular line to $T_{p_{k}} M^{n}$ which passes through p_{0}. Since $d\left(q_{k}, p_{0}\right)=g\left(p_{k}\right)$ is a bounded sequence, there is a subsequence $\left\{q_{k_{j}}\right\}$ that converges to a point $q \in \mathbb{R}^{n+1}$. Then $q \in T_{p} M^{n}$ for some point $p \in M^{n}$, since $\cup_{p \in M} T_{p} M^{n}$ is closed and $q_{k} \in T_{p_{k}} M^{n}$ for every k. Therefore $g(p)=$ $d\left(p_{0}, T_{p} M\right)=d$, for $d\left(p_{0}, q\right)=d$ and

$$
d \leq d\left(p_{0}, T_{p} M\right) \leq d\left(p_{0}, q\right)=d
$$

Case $c=1$. For each point p_{k}, let s_{k} be the orthogonal projection of p_{0} over the hyperplane of \mathbb{R}^{n+2} which contains $\left(Q_{c}^{n}\right)_{p_{k}}$ and let q_{k} be the intersection of $\left(Q_{c}^{n}\right)_{p_{k}}$ with the line which passes through the origin and the point s_{k}. Since, for every $k, q_{k} \in Q_{c}^{n+1}=S^{n+1}$ and $s_{k} \in \mathbb{B}^{n+2}=\left\{p \in \mathbb{R}^{n+2} ;\|p\| \leq 1\right\}$, there is a subsequence k_{j} such that $\left\{q_{k_{j}}\right\}$ converges to a point $q \in S^{n+1}$ and $\left\{s_{k_{j}}\right\}$ converges to a point $s \in \mathbb{B}^{n+2}$. Then $q \in\left(Q_{c}^{n}\right)_{p}$ for some point $p \in M^{n}$, since $\cup_{p \in M}\left(Q_{c}^{n}\right)_{p}$ is closed in S^{n+1}. Moreover, s and q are colinear, because s_{k} and q_{k} are colinear for every k. Thus s belongs to the hyperplane L_{p} of \mathbb{R}^{n+2} that contains $\left(Q_{c}^{n}\right)_{p}$. Since $g\left(p_{k}\right)=d\left(s_{k}, p_{0}\right)$ and

$$
d \leq g(p)=d\left(p_{0}, L_{p}\right) \leq d\left(p_{0}, s\right)=\lim _{k \rightarrow \infty} d\left(s_{k}, p_{0}\right)=d
$$

we have that $g(p)=d$.
Case $c=-1$. To prove the theorem in this case we will use the hyperboloid model of Q_{c}^{n+1} (cf. section 2). In the same way as in the preceeding case, we can define the point s_{k}. Form (5), the euclidean distance of p_{0} to the hyperplane of \mathbb{R}^{n+2} which passes through the origin and contains $\left(Q_{c}^{n}\right)_{p_{k}}$ is given by

$$
\left\|s_{k}-p_{o}\right\| \frac{g\left(p_{k}\right)}{\sqrt{1+2 g\left(p_{k}\right)^{2}}}
$$

where \| \| is the euclidean norm.

We assert that $\left\langle\left\langle s_{k}, s_{k}\right\rangle\right\rangle<0$, where $\langle\langle\rangle$,$\rangle is the Lorentz inner product. If$ $\left\langle\left\langle s_{k}, s_{k}\right\rangle\right\rangle \geq 0$, we have

$$
\left\|s_{k}-p_{o}\right\| \geq \frac{\sqrt{2}}{2}
$$

since s_{k} and $s_{k}-p_{0}$ are perpendicular. Then

$$
\frac{g\left(p_{k}\right)^{2}}{1+2 g\left(p_{k}\right)^{2}} \geq \frac{1}{2}
$$

which is a contradiction and proves the assertion.
Let $\lambda_{k}>0$ be such that $\lambda_{k}^{2}\left\langle\left\langle s_{k}, s_{k}\right\rangle\right\rangle=-1$, and let $q_{k}=\lambda_{k} s_{k}$, i.e., q_{k} is the intersection of $\left(Q_{c}^{n}\right)_{p_{k}}$ with the line which passes through the origin an through s_{k}.

Since the sequence $\left\{s_{k}\right\}_{k \geq 0}$ is bounded, by passing to a subsequence if necessary, there exists a point s such that $s_{k} \rightarrow s$, as $k \rightarrow \infty$. We can prove, as before, that $\langle\langle s, s\rangle\rangle<0$, since s and $s-p_{0}$ are perpendicular and $\left\|s-p_{0}\right\|^{2}=\frac{d^{2}}{1+2 d^{2}}$. Thus the sequence $\left\{q_{k}\right\}$ is bounded, since the sequence $\left\{\frac{1}{\left\langle\left\langle s_{k}, s_{k}\right\rangle\right\rangle}\right\}$ is bounded from below by a positive constant and

$$
\left\|q_{k}\right\|^{2}=-\frac{\left\|s_{k}\right\|^{2}}{\left\langle\left\langle s_{k}, s_{k}\right\rangle\right\rangle}
$$

Let $\left\{q_{k_{j}}\right\}$ be a subsequence which converges to a point $q \in Q_{c}^{n+1}$. Since $\cup_{p \in M}\left(Q_{c}^{n}\right)_{p}$ is closed, and $q_{k} \in\left(Q_{c}^{n}\right)_{p_{k}}$ for every k, we have that $q \in\left(Q_{c}^{n}\right)_{p}$, for some point $p \in M^{n}$. Moreover, s belongs to the hyperplane L_{p} of \mathbb{R}^{n+2} which contains $\left(Q_{c}^{n}\right)_{p}$, for s and q are colinear. Thus $g(p)=d$, since

$$
\frac{g(p)}{\sqrt{1+2 g(p)^{2}}}=d\left(p_{0}, L_{p}\right) \leq\left\|s-p_{0}\right\|=\frac{d}{\sqrt{1+2 d^{2}}},
$$

where $d\left(p_{0}, L_{p}\right)$ is the euclidean distance from p_{0} to L_{p}.
When the set W is only nonempty, we have obtained the following result, for the cases $c \leq 0$.
3.2 Proposition. Let M^{n} be a complete Riemannian manifold and $x: M^{n} \rightarrow$ $Q_{c}^{n+1}, c \leq 0$, be a minimal isometric immersion. If W is nonempty, then x is stable.
Proof. Let $p_{0} \in W$ and X be the position vector with origin p_{0}. Since $p_{0} \in W$, we can choose an orientation N in M^{n} for which the support function $g=\langle X, N\rangle$
is positive. From Proposition (2.1), $\Delta g+\|B\|^{2} g=0$. In ([4], Theorem 1) F. Colbrie and R. Schoen proved that an operator of the type $\Delta+q$, where $q: M \rightarrow \mathbb{R}$ is a differentiable function, is positive if and only if there is a positive differentiable function $f: M \rightarrow \mathbb{R}$ such that $\Delta f+q f=0$. Since the support function is positive and $\Delta g+\|B\|^{2} g=0$, the operator $\Delta+\|B\|^{2}$ is positive definite, i.e.,

$$
\int_{M}\left(|\operatorname{grad} f|^{2}-\|B\|^{2} f^{2}\right) d A>0
$$

for every nonzero function $f: M \rightarrow \mathbb{R}$ with compact support in M^{n}. Then, if $c \leq 0$,

$$
\int_{M}\left(|\operatorname{grad} f|^{2}-\left(\|B\|^{2}+n c\right) f^{2}\right) d A>0
$$

for every such function f. Since the Ricci curvature of Q_{c}^{n+1} is $n c$, we obtain that the operator $A+\|B\|^{2}+\operatorname{Ricc}(N)$ is positive definite, i.e., x is stable.
3.3 Remark. From the result of Hasanis and Koutroufiotis mentioned in the introduction we have that the above proposition doesn't hold for $c>0$.
3.4 Remark. In ([5], pg. 57) J. Gomes gave examples of stable minimal hypersurface in $Q_{c}^{n+1}, c<0$, which are not totally geodesic. For these hypersurfaces it is easy to see that the set W is empty. Then the converse of the above proposition is not true.

4. Compact Hypersurfaces with Nonempty W

We first generalize the result of Halpern mentioned in the introduction.
4.1 Proposition. Let M^{n} be a connected, compact manifold, and let $x: M^{n} \rightarrow$ Q_{c}^{n+1} be an immersion. If W is nonempty, then M^{n} is diffeomorphic to the sphere S^{n} and x is an embedding.

Proof. The case $c=0$ has been proved by Halpern in [6]. Let $c<0$ and let $\mathbb{R}_{+}^{n+1}=\left\{\left(v_{1}, \ldots, v_{n+1}\right) \in \mathbb{R}^{n+1} ; v_{n+1}>0\right\}$ be the euclidean half space with the usual metric. To prove the proposition in this case, it is sufficient to notice that there is a diffeomorphism $B: Q_{c}^{n+1} \rightarrow \mathbb{R}_{+}^{n+1}$ which preserves the totally geodesic submanifolds. This mapping, usually known as Beltrami's mapping can be found,
for instance in (do Carmo, Warner [3], pg. 142). Since a diffeomorphism preserves tangency, the above result follows immediately from the case $c=0$.

To prove the case $c>0$, we will make use of an argument which was used by Halpern in [6]. Let $p_{0} \in W$. We can assume, without loss of generality, that $c=1$ and $p_{0}=e_{n+1}=(0, \ldots, 0,1)$. Since $e_{n+1} \in W,-e_{n+1} \notin x\left(M^{n}\right)$, because every totally geodesic hypersurface of S^{n+1} which passes through $-e_{n+1}$ also passes through e_{n+1}. Since $x\left(M^{n}\right) \subseteq S^{n+1} \mid\left\{e_{n+1},-e_{n+1}\right\}$, the function $r(\cdot)=$ $d\left(\cdot, e_{n+1}\right)$ is differentiable in $x\left(M^{n}\right)$, and $\left(\exp _{e_{n+1}}\right)^{-1}: x\left(M^{n}\right) \rightarrow B_{\pi}(0)$ is well defined; here $\exp _{e_{n+1}}$ is the exponential map of S^{n+1} at e_{n+1} and

$$
B_{\pi}(0)=\left\{v \in T_{e_{n+1}} S^{n+1} ;\|v\|<\pi\right\}
$$

Let $p \in S^{n+1} \mid\left\{e_{n+1},-e_{n+1}\right\}$ and let $\gamma_{p}:[0, \pi) \rightarrow S^{n+1}$ be the geodesic such that $\gamma_{p}(0)=e_{n+1}$ and $\gamma_{p}(r(p))=p$. There exists a unit vector $v(p) \in$ $T_{e_{n+1}} S^{n+1}, v(p)=\exp _{e_{n+1}}^{-1}(p) \mid r(p)$, such that

$$
\gamma_{p}(t)=\cos t e_{n+1}+\sin t v(p)
$$

Since $\gamma_{p}(r(p))=p$, we have

$$
v(p)=\left(p-\cos r(p) e_{n+1}\right) \mid \sin r(p) .
$$

Now let $\rho: S^{n+1} \mid\left\{e_{n+1},-e_{n+1}\right\} \rightarrow S^{n}$ be the map which associates to each point p, the point $\gamma_{p}(\pi / 2)$. This map is a kind of Gauss' map, and $\rho(p)=v(p)$. Since

$$
\begin{aligned}
d \rho_{p}(w)= & \frac{1}{(\sin r(p))^{2}}\left[\left(w+d r_{p}(w) \sin r(p) e_{n+1}\right) \sin r(p)\right. \\
& \left.-d r_{p}(w) \cos r(p)\left(p-\cos r(p) e_{n+1}\right)\right]
\end{aligned}
$$

we have that $d \rho_{p}(w)=0$, if and only if,

$$
\begin{aligned}
w & =d r_{p}(w)\left(\frac{\cos r(p)}{\sin r(p)}\left(p-\cos r(p) e_{n+1}\right)-\sin r(p) e_{n+1}\right) \\
& =d r_{p}(w)\left(\cos r(p) v(p)-\sin r(p) e_{n+1}\right)
\end{aligned}
$$

Thus $d \rho_{p}(w)=0$, if and only if, w is a scalar multiple of $\gamma_{p}^{\prime}(r(p))$, since

$$
\gamma_{p}^{\prime}(r(p))=-\sin r(p) e_{n+1}+\cos r(p) v(p)
$$

We will now consider the map $F=\rho \circ x: M^{n} \rightarrow S^{n}$. Since $e_{n+1} \notin W$, $\gamma_{p}^{\prime}(r(p)) \notin d x_{p}\left(T_{p} M\right)$. Then the map F is a local diffeomorphism. On the other hand, since M^{n} is compact and S^{n} is simply connected, F is a diffeomorphism. So x is an embedding, for $F=\rho \circ x$.

In the compact case with constant mean curvature we obtain the following result.
4.2 Theorem. Let M^{n} be a connected, compact Riemannian manifold and let $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion with constant mean curvature H. Then W is nonempty, if and only if, x is umbilic, i.e., $x\left(M^{n}\right)$ is a geodesic sphere of Q_{n}^{n+1}.

Proof. Let $p_{0} \in W$ and X be the position vector with origin p_{0}. Since $p_{0} \in W$, the support function $g=\langle X, N\rangle$ is nonzero at every point. We can assume that $g>0$.

From Proposition (2.1), $\Delta g=-\|B\|^{2} g-n H \theta_{c}$. By integrating this expression over M^{n}, and by using Stokes' Theorem, we obtain

$$
0=\int_{M} \Delta g d A=-\int_{M}\left(\|B\|^{2} g+n H \theta_{c}\right) d A
$$

Thus $\int_{M}\|B\|^{2} g d A=-n H \int_{M} \theta_{c} d A$. But, from (6),

$$
\int_{M}\|B\|^{2} g d A=-n H \int_{M} \theta_{c} d A=n H^{2} \int_{M} g d A
$$

Since $\|B\|^{2} \geq n H^{2}$ and $g>0$, we have that $\|B\|^{2}=n H^{2}$, which proves that the immersion is umbilic.
4.3 Remark. Alexandrov's Theorem says that if $x: M^{n} \rightarrow Q_{c}^{n+1}, c \leq 0$, is an isometric embedding with constant mean curvature, then $x\left(M^{n}\right)$ is a geodesic sphere. For the case $c>0$, this result holds if $x\left(M^{n}\right)$ is contained in an hemisphere of Q_{c}^{n+1}. Therefore, Alexandrov's Theorem, together with Proposition (4.1), gives another proof of Theorem (2.2), with the restriction made above when $c>0$.
4.4 Remark. Examples of tori in \mathbb{R}^{3} (see Wente [12]) and nonumbilic immersions $x: S^{n} \rightarrow Q_{c}^{n+1}, c \leq 0$, with constant mean curvature (see Gomes [5], Hsiang [9]) are known. Therefore, in these examples, the set W is empty.

In (L. Barbosa, do Carmo, Eschenburg [2]) the following theorem was proved: Let M^{n} be a compact Riemannian manifold and $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion with constant mean curvature. Then x is stable, if and only if, x is umbilic. From this result, we obtain the following Corollary of Theorem (4.2).
4.5 Corollary. Let M^{n} be a compact Riemannian manifold, and let x: $M^{n} \rightarrow$ Q_{c}^{n+1} be an isometric immersion with constant mean curvature. Then W is nonempty, if and only if, x is stable.

References

[1] Barbosa, J. L., do Carmo, M., Stability of Hypersurfaces with Constant Mean Curvature, Math. Zeitschrift. 185, 339-353 (1984).
[2] Barbosa, J. L., do Carmo, M., Eschenburg, J. Stability of Hypersurfaces of Constant Mean Curvature in Riemannian Manifolds, Math. Z. 197, 123-138 (1988).
[3] do Carmo, M., Warner, F. W., Rigidity and Convexity of Hipersurfaces in Spheres, J. Diff. Geom. 4, 133-144 (1970).
[4] Fischer Colbrie, D., Schoen, R., The Structure of Complete Stable Minimal Surfaces in 3-Manifolds of Non-negative Scalar Curvature. Comm. Pure Appl. Math. 33, 199-211 (1980).
[5] Gomes, J. M., Sobre Hipersuperfícies com Curvatura Média Constante no Espaço Hiperbólico, Tese do Doutorado (IMPA) 1984.
[6] Halpern, B., On the Immersion of an n-dimensional Manifold in $n+1$-dimensional Euclidean Space, Proc. Amer. Math. Soc. 30, 181-184 (1971).
[7] Hasanis, T., Koutroufiotis, D., A Property of Complete Minimal Surfaces, Trans. Amer. Math. Soc. 281, 833-843 (1984).
[8] Heintze, E., Extrinsic Upper Bounds for λ_{1}, Institut für Mathematik. Preprint n. 93 (1986).
[9] Hsiang, W. Y., Teng, Z. H., Yu, W. C., New Examples of Constant Mean Curvature Immersions of $(2 k-1)$-Spheres into Euclidean $2 k$-Space, Ann. of Math. 117, 609-625 (1983).
[10] Jorge, L., Koutroufiotis, D., An Estimate for the Curvature of Bounded Submanifolds, Amer. J. Math. 103, 711-725 (1981).
[11] Pogorelov, A. V., On Minimal Hypersurfaces in Spherical Space, Soviet Math. Dokl. 13 (1972).
[12] Wente, H. C., A Counterexample in 3-Space to a Conjecture of H. Hopf., Lecture Notes in Math. 1111, Springer, 421-429 (1984).

Hilário Alencar

Univ. Federal de Alagoas
Instituto de Matemática
57072-900 Maceió, Alagoas
Email: hilario@mat.ufal.br

Katia Frensel

Univ. Federal Fluminense
Instituto de Matemática
24210-201 Niterói, Rio de Janeiro
Email: frensel@mat.uff.br

