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Abstract. Hypersurfaces of euclidean spaces with vanishing r-mean curvature gen-
eralize minimal hypersurfaces (case r ¼ 1) and include the important case of scalar curva-
ture ðr ¼ 2Þ. They are critical points of variational problems and a notion of stability can
be assigned to them. When their defining equations are elliptic, we obtain a criterion for
stability of bounded domains of such hypersurfaces that generalizes a known theorem of
Barbosa and do Carmo for stability of minimal surfaces.

1. Introduction

The goal of this paper is to generalize the following result. Let x:M 2 ! R3 be an
orientable minimal surface and DHM be a domain with compact closure and piecewise
smooth boundary. Let g:M ! S2

1 HR3 be the Gauss map of x.

Theorem A ([BdC], Theorem 1.3). Assume that the area of gðDÞHS2
1 is smaller than

the area of a hemisphere of S2
1 . Then D is stable and the estimate is sharp.

A first generalization is as follows. Let x:M 3 ! R4 be a hypersurface with scalar
curvature H2 ¼ 0 (this generalizes the above notion of minimal surface). We will say that
DHM 3 is a regular domain if it has compact closure and piecewise smooth boundary. Let
g:M 3 ! S3

1 be the Gauss map of x and let DHM 3 be a regular domain inM.

We recall that hypersurfaces x:M 3 ! R4 with H2 ¼ 0 are critical points of the func-
tional

Ð
D

H1 dM for all variations compactly supported in D (see [Re], [Ro] or [BC]). Thus

the notion of stability for such hypersurfaces makes sense (see details below) and we can
ask for a condition to ensure that a regular domain DHM be stable. Surprisingly enough,
the condition is essentially the same as for a minimal surface.

Theorem 1.1. Assume that M is orientable, that the Gauss-Kronecker curvature H3 is

nowhere zero and that the area of gðDÞHS3
1 is smaller than the area of a hemisphere of S

3
1 .

Then D is stable and the estimate is sharp.



Compared with Theorem A, Theorem 1.1 has one additional condition, namely that
H3 is nowhere zero. If H3 is allowed to be identically zero, then we can find an example
(discussed later in 3.9) for which the above theorem is false. Hence, some condition on H3

is required. See, however, the question 4.2 in the last section of this paper.

Theorem 1.1 is but a particular case of a series of similar results for hypersurfaces
x:Mn ! Rnþ1 with Hn�1 ¼ 0. Such hypersurfaces are critical points of the functionalÐ
D

Hn�2 dM for variations compactly supported in D. Thus the notion of stability makes

sense, and the following theorem holds for regular domains D in M. Let

g:M ! Sn1 HRnþ1

be the Gauss map of x.

Theorem 1.2. Assume that M is orientable, that the Gauss-Kronecker curvature Hn is

nowhere zero and that the area of gðDÞ is smaller than the area of a hemisphere of Sn1 . Then
D is stable and the estimate is sharp.

The proof of Theorem 1.2 works equally well for a more general situation. To state
this more general result, we need a few definitions. Let x:Mn ! Rnþ1 be a hypersurface
and consider the elementary symmetric functions Sr of the principal curvatures of x:

S0 ¼ 1; Sr ¼
P

i1<���<ir
ki1 . . . kir ð1e re nÞ; Sr ¼ 0 ðr > nÞ:

The r-th mean curvature Hr of x is defined by

Sr ¼
n

r

� �
Hr:

It is known that (see e.g. [Re], [Ro] or [BC]) Hrþ1 ¼ 0 i¤M is a critical point of the integral
Ar ¼

Ð
M

Sr dM for compactly supported variations of M.

From now on, unless explicitly stated, we assume that M is orientable.

To describe the Jacobi equation of such a critical point, it is convenient to introduce
the Newton transformations defined inductively by

P0 ¼ I ; Pr ¼ SrI � BPr�1:

Here I is the identity matrix and Bp is the linear map of TpM, p AM, associated to the
second fundamental form of x. We then introduce a second order di¤erential operator Lr
that will play, in the present case, a rôle similar to that of the Laplacian in the minimal
case:

Lrð f Þ ¼ divðPr‘f Þ;ð1Þ
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where ‘f is the gradient of f in the induced metric. Notice that L0 agrees with the Lap-
lacian. Finally, the Jacobi equation can be written as

Tr f ¼def Lr f � ðrþ 2ÞSrþ2 f ¼ 0;ð2Þ

where f is the normal component of the variation vector field. Although L0 ¼ D is always
elliptic, some conditions are necessary to ensure that Lr is elliptic. This is contained in a
recent work of Hounie-Leite ([HL1], Corollary 2.3) and can be stated as follows:

Assume Hrþ1 ¼ 0. Then Lr is elliptic i¤ rankðBÞ > r.

Thus, the hypothesis that Hn is nowhere zero ensures that Lr is elliptic. By (1), the fact
that Lr is elliptic is equivalent to the fact that Pr has all its eigenvalues positive or all its
eigenvalues negative.

We will denote by yiðrÞ the eigenvalues of
ffiffiffiffiffi
Pr

p
B when Pr is positive definite and the

eigenvalues of
ffiffiffiffiffiffiffiffi
�Pr

p
B when Pr is negative definite.

Assume that Hrþ1 ¼ 0, and let DHM be a regular domain. We say that D is r-stable

if the critical point is such that
d 2Ar

dt2

� �
t¼0

> 0, for all variations with compact support

in D, or
d 2Ar

dt2

� �
t¼0

< 0 for all such variations. This unusual definition requires some dis-

cussion that will be presented in a moment. If the critical point is such that
d 2Ar

dt2

� �
t¼0

> 0

for some variation with compact support in D and
d 2Ar

dt2

� �
t¼0

< 0 for some other variation
of the same nature, we say that D is r-unstable.

We now justify our definition of stability. In the minimal case, Lr is the Laplacian
that is elliptic and can be defined so that the matrix of the coe‰cients of its principal part is
either positive definite or negative definite; once one of these choices is made, we can stick
to it to the rest of our investigation. In the present case, however, Lr ¼ divðPr‘f Þ depends
on the hypersurface and, even when it is elliptic, the symbol can be either positive definite
or negative definite and no definite choice can be made once and for all. This is related to
the fact that Ar ¼

Ð
D

Sr dM is not necessarily positive like A0. To circumvent this di‰culty,

we could proceed as follows. If r is odd and Lr is elliptic for a critical point, we could, by
choosing orientation, assume Ar to be positive for that critical point. This follows from
Lemma (2.3)(ii) in Section 2 of this paper, i.e., if Lr is elliptic, Sr is always positive or
always negative. When r is even, Lr is elliptic and Pr is negative definite, we could change
the variational problem into �Ar. These choices, besides leaving aside the non-elliptic case,
are somewhat artificial.

Our definition of stability is more adequate to the present problem. When Lr is elliptic
and Pr is positive definite it gives the usual notion of minimum. When Lr is elliptic and Pr
is negative definite, no minimum can exist and the maximum is the natural substitute for
it; this is equivalent to looking for the minimum of the new variational problem �Ar. A
moment’s reflection shows that this agrees with the content of the Morse Index Theorem
which applies to the case Hrþ1 ¼ 0 when rankðBÞ > r yielding, for each compact set, a finite
number of variations that give maxima, when Pr is positive definite, and a finite number of
variations that give minima, when Pr is negative definite.
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We need a final definition before stating our main result. We say that a hypersurface
x:Mn ! Rnþ1 is r-special if

jSnjPn
j¼1

y2i ðrÞ
¼ constant:

Theorem 1.3. Let x:Mn ! Rnþ1 be an r-special immersion with Hrþ1 ¼ 0 and Hn3 0
everywhere. Let DHM be a regular domain and g:M ! Sn1 be the Gauss map of x. If the
area of gðDÞ is smaller than the area of a spherical cap Ct HSn1 whose first eigenvalue for the

spherical Laplacian is t, where

t ¼ max
i;D

�Pn
j¼1

y2j ðrÞ=y
2
i ðrÞ

�
;

then D is r-stable.

The estimate of Theorem 1.2 is a simple corollary of Theorem 1.3, because, as we will
show in Lemma 2.4, under the condition Hn�1 ¼ 0, the eigenvalues yi of

ffiffiffiffiffiffiffiffiffiffi
Pn�2

p
B (or offfiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Pn�2

p
B) satisfy y2i ¼ �Sn. Thus

jSnjPn
j¼1

y2j

¼ jSnj
�nSn

¼ 1

n
;

hence the immersion is ðn� 2Þ-special. Furthermore

t ¼ max
i;D

�P
j

y2j =y
2
i

�
¼ max

i;D
ð�nSn=�SnÞ ¼ n;

hence the spherical cap Ct ¼ Cn is a hemisphere of Sn1 , and this shows what we claimed.
That the estimate of Theorem 1.2 is sharp will be shown in Section 3.

Remark 1.4. Although it is conceivable that there exist examples of r-special hyper-
surfaces with Hrþ1 ¼ 0 and Hn3 0 everywhere, other than those of Theorem 1.2, we have
not yet found them. The point of Theorem 1.3 is that it is not necessary that jSnj=

P
y2i ðrÞ

be 1=n. It can be any constant and the proof works equally well.

Remark 1.5. As we will show in the proof of Theorem 1.3, we can prove a little
more, namely we can replace the condition that area gðDÞ < areaCt by the condition area
gðDÞe areaCt.

We can also prove an instability result:

Theorem 1.6. Let x:Mn ! Rnþ1 be an r-special immersion with Hrþ1 ¼ 0 and Hn3 0
everywhere. Let DHM be a regular domain and g:Mn ! Sn1 be the Gauss map of x.
Assume, in addition, that g restricted to D is a covering onto gðDÞ. If the first eigenvalue of
gðDÞ for the spherical Laplacian is smaller than g, where
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g ¼ min
i;D

�Pn
j¼1

y2j ðrÞ=y
2
i ðrÞ

�
;

then D is r-unstable.

The following corollary is immediate from the considerations after Theorem 1.3. It
generalizes a result of Schwarz for minimal surfaces (see [BdC], Theorem 2.7).

Corollary 1.7. Let x:Mn ! Rnþ1 be a hypersurface with Hn�1 ¼ 0 and Hn3 0
everywhere. Let DHM be a regular domain and let g:Mn ! Sn1 be the Gauss map of x.
Assume, in addition, that g restricted to D is a covering map onto gðDÞ. If the first eigenvalue
of gðDÞ for the spherical Laplacian is smaller than n, then D is r-unstable.

Remark 1.8. There are many examples of hypersurfaces x:Mn ! Rnþ1 with Hr ¼ 0
and Hn3 0 everywhere. For instance, all rotation hypersurfaces with Hr ¼ 0 (see [HL] or
[P1]) have this property. Also, in the hypersurfaces x:M 2pþ1 ! R2pþ2 that are invariant by
0ðpþ 1Þ 
 0ðpþ 1Þ and have Hr ¼ 0, in most cases, Hn ¼ 0 only at one (compact) orbit,
and any domain DHM that does not meet such orbit satisfies Hn3 0 everywhere; the case
r ¼ 2 is fully treated in [P2] ðp ¼ 1Þ and [Sa] ðp > 1Þ.

We want to thank M. L. Leite for asking one of us if a result similar to Theorem 1.1
would be true. Thanks are also due to Walcy Santos for many discussions on this subject,
and to the referee for various useful remarks.

2. Preliminaries

LetW be an n-dimensional Riemannian manifold and let DHW be a regular domain
inW. Let us denote by Cy

0 ðDÞ (respectively Cy
c ðDÞ) the set of smooth functions which are

zero on qD (respectively with compact support in D).

We now recall some properties and results concerning the first eigenvalue of an
elliptic, self-adjoint, linear di¤erential operator T : Cy

0 ðDÞ ! CyðDÞ of second order.
Elliptic means that the matrix of the coe‰cients of the principal part of T is either positive
definite or negative definite; for convenience, we assume here that this matrix is positive
definite. We recall that the first eigenvalue lT1 ðDÞ of T is defined as the smallest l that sat-
isfies

TðgÞ þ lg ¼ 0;ð3Þ

for some nonzero function g A Cy
0 ðDÞ. A nonzero function g in Cy

0 ðDÞ that satisfies (3) for
l ¼ lT1 is called a first eigenfunction of T in D.

Lemma 2.1. If D and D 0 are domains in M with DHD 0 then lT1 ðDÞf lT1 ðD 0Þ and
equality holds i¤ D ¼ D 0.

For a proof see [Sm], Lemma 2 and notice that T satisfies the unique continuation
principle (see [A]).
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Lemma 2.2.

lT1 ðDÞ ¼ inf

�
Ð
D

f Tð f Þ dMÐ
D

f 2 dM
; f A H 1ðDÞ; f 1j 0

8><
>:

9>=
>;;

where H 1ðDÞ denotes the Sobolev space over D.

For a proof, see [Sm], Lemma 4(a). For the definition of H 1ðDÞ, see [Sm], proof of
Lemma 2.

Let e1; e2; . . . ; en be orthonormal eigenvectors of B corresponding, respectively, to the
eigenvalues k1; k2; . . . ; kn. We represent by Bi the restriction of the transformation B to the
subspace normal to ei and by SrðBiÞ the r-symmetric function associated to Bi. The proof
of the following lemma can be found in [BC], Lemma 2.1.

Lemma 2.3. For each 1e re n� 1, we have:

(i) PrðeiÞ ¼ SrðBiÞei for each 1e ie n.

(ii) traceðPrÞ ¼
Pn
i¼1

SrðBiÞ ¼ ðn� rÞSr.

(iii) traceðBPrÞ ¼
Pn
i¼1

kiSrðBiÞ ¼ ðrþ 1ÞSrþ1.

(iv) traceðB2PrÞ ¼
Pn
i¼1

k2i SrðBiÞ ¼ S1Srþ1 � ðrþ 2ÞSrþ2.

The following lemma has been used in the Introduction.

Lemma 2.4. Let Sn�1 ¼ 0. Then y2i ðrÞ ¼ �Sn, for r ¼ n� 2.

Proof. In fact, we have by definition

0 ¼ Sn�1 ¼ kiSn�2ðBiÞ þ Sn�1ðBiÞ

and thus, by Lemma 2.3 (i), we obtain, for r ¼ n� 2,

y2i ðrÞ ¼ k2i Sn�2ðBiÞ ¼ ki

�Sn�1ðBiÞ

�
¼ �Sn: r

When working with minimal immersions one uses variations vanishing on the
boundary qD of a regular domain D. We now explain why we use variations with support
in D, rather than variations vanishing on qD, when describing the variational problem
associated to the immersions with vanishing rþ 1-mean curvature. Denote by X a variation

of D and let E ¼ qX

qt
be its variational vector. Set f ¼ hE;Ni, where N is the unit normal

field along xðDÞ and denote by n the unit normal field along xðqDÞ tangent to xðDÞ. The
formula for the first variation of the functional
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Ar ¼
Ð
D

Sr dM;

is

A 0
0ð0Þð f Þ ¼

Ð
D

½�S1 f dM þ
Ð
qD

hE; ni ds;

A 0
rð0Þð f Þ ¼

Ð
D

½�ðrþ 1ÞSrþ1 f dM þ
Ð
qD

½hPr�1‘f ; niþ SrhE; ni ds; rf 1:

Here ‘f is the gradient of f , ds is the element of volume of qD. Notice that to eliminate the
boundary term when r ¼ 0 it is enough to assume that the variation fixes the boundary.
However, to do the same when rf 1, we need an additional condition, namely ‘f jqD ¼ 0
or h‘f ;Pr�1nijqD ¼ 0. Thus, it is convenient to consider variations with support contained
in D, and, for unification purposes, we will do that even when r ¼ 0.

We can use Stokes Theorem and the self-adjointness of Pr to see that Lr is self-
adjoint. Thus we can define a bilinear symmetric form by

Irð f ; gÞ ¼ �
Ð
M

f TrðgÞ dM;

and it can be proved that

A 00
r ð0Þð f Þ ¼ Irð f ; f Þ:

Definition 2.5. We say that D is r-stable if Irð f ; f Þ > 0 for all f A Cy
c ðDÞ or if

Irð f ; f Þ < 0 for all f A Cy
c ðDÞ. We say that D is r-unstable if there exists a function

f A Cy
c ðDÞ such that Irð f ; f Þ < 0 and there exists a function g A Cy

c ðDÞ such that
Irðg; gÞ > 0.

Remark 2.6. Along the paper we will work with the case that Pr is positive definite
and will make some comments for the case that Pr is negative definite at appropriate places.

Because of Lemma (2.3)(iv) and the fact that Srþ1 ¼ 0, we can rewrite Tr as

Tr ¼ Lr þ traceðB2PrÞ ¼ Lr þ k
ffiffiffiffiffi
Pr

p
Bk2;

where

k
ffiffiffiffiffi
Pr

p
Bk2 ¼

Pn
i¼1

y2i ðrÞ:

The following lemma has been proved in [T] for r ¼ 1. Except for the fact that we
must consider two cases, according to the positivity (or negativity) of Pr, the proof below is
similar to that of [T]. We included it here for completeness.

Lemma 2.7. The following statements are equivalent:

(i) bf A Cy
c ðDÞ such that Irð f ; f Þe 0.
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(ii) bf A Cy
c ðDÞ such that Irð f ; f Þ < 0.

(iii) bf A Cy
0 ðDÞ such that Irð f ; f Þ < 0.

Proof. (i) ) (ii): Suppose (i) is true and (ii) is not true. Then, Irðg; gÞf 0 for all
g A Cy

c ðDÞ and there exists a nonzero function f A Cy
c ðDÞ such that Irð f ; f Þ ¼ 0. Let t

be a real number. Since Ir is bilinear and Irð f ; f Þ ¼ 0, we have for g A Cy
c ðDÞ and for all

t that

Irð f þ tg; f þ tgÞ ¼ 2tIrð f ; gÞ þ t2

Irðg; gÞ

�2
:

But Irð f þ tg; f þ tgÞf 0 for all real t and then we must have Irð f ; gÞ ¼ 0. Thus,
Irð f ; gÞ ¼ 0 for all g A Cy

c ðDÞ, which implies that Trð f Þ ¼ 0. Since f has compact support,
it vanishes on an open set and then, by the unique continuation principle (cf. [A]), f ¼ 0 on
D, a contradiction.

(iii) ) (ii): Let f be the function in the statement of (iii). Set

DR ¼ fp A D; distðp; qDÞ > Rg:

For R small enough, DR is a domain with smooth boundary. Let fR A Cy
c ðDÞ be such that

fR ¼ 1 in DR, j‘fRj < 2=R in D and 0e fR e 1 in D. Define g ¼ fR f . Using Stokes The-
orem we have

Irð f ; f Þ ¼
Ð
D

h‘f ;Pr‘f i dM þ
Ð
D


ðrþ 2ÞSrþ2

�
f 2 dM

and

Irðg; gÞ � Irð f ; f Þ ¼
Ð
D

�
ðf2
R � 1Þ

�
h‘f ;Pr‘f iþ


ðrþ 2ÞSrþ2

�
f 2
�
þ 2f fRh‘f ;Pr‘fRi

þ f 2h‘fR;Pr‘fRi
�
dM:

The function under the integral is zero in DR and we claim that it is bounded independently
of R on DnDR. Then taking R small enough, we see that Irðg; gÞ < 0 and this proves the
proposition. We have then to prove the claim. By using the positivity of Pr, we can see that

ðf2
R � 1Þ

�
h‘f ;Pr‘f iþ


ðrþ 2ÞSrþ2

�
f 2
�
e jðrþ 2ÞSrþ2j f 2:

The Cauchy-Schwarz inequality yields

2f fRh‘f ;Pr‘fRiþ f 2h‘fR;Pr‘fRie 2j f j j‘f j jPrj j‘fRj

þ f 2jPrj j‘fRj
2:

Finally, we use that j f jeR sup
D

j‘f j in DnDR, which is a consequence of the Mean Value

Theorem, and that j‘fRj <
2

R
to obtain
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2f fRh‘f ;Pr‘fRiþ f 2h‘fR;Pr‘fRie 4

�
sup
D

j‘f j
�2
jPrj þ 4jPrj

�
sup
D

j‘f j
�2
:

Thus the claim is proved.

All the other implications are trivial. r

Remark 2.8. According to our convention, we have assumed Pr to be positive defi-
nite. If Pr is negative definite, the first estimate above becomes

ð1� f2
RÞ½h‘f ;�Pr‘f i� ðrþ 2ÞSrþ2 f

2e j�Prj j‘f j2 þ jðrþ 2ÞSrþ2j f 2;

all the other estimates remaining the same. Thus, the same conclusion holds.

Since we are supposing that the Gauss Kronecker curvature Hn ¼ detðBÞ is nowhere
zero, the Gauss map is an immersion; hence it can be used to define a new Riemannian
metric ~ss on M by setting

~ssðX ;YÞ ¼ hBX ;BYi; X ;Y A TðMÞ;

where h ; i denotes the Riemannian metric induced inM by Rnþ1 and TðMÞ is the tangent
bundle ofM. Notice that the metric ~ss is the pull-back by the Gauss map of the metric of the
sphere. Thus, the sectional curvature of the metric ~ss is one.

Let ‘f denote the gradient of f in the metric h ; i and ~‘‘f denote the gradient of f in
the metric ~ss. We have the following lemma.

Lemma 2.9. For any smooth function f on M, we have ‘f ¼ B2~‘‘f .

Proof. Let v A TðMÞ. If df denotes the di¤erential of f , we have, by using the self-
adjointness of B, that

h‘f ; vi ¼ df ðvÞ ¼ ~ssð~‘‘f ; vÞ ¼ hB~‘‘f ;Bvi ¼ hB2~‘‘f ; vi

and then ‘f ¼ B2~‘‘f . r

3. Proofs

3.1. Proof of Theorem 1.3. We will need a few facts from Linear Algebra. Let V be
a vector space with a positive definite inner product h ; i and let A ¼ V ! V be a self-
adjoint linear map. Then it is easily checked that the norm jAj of A, namely

jAj ¼ sup
X

fjAX j;X A V ; jX j ¼ 1g;

is given by jAj ¼ max
i

jlij, where li, i ¼ 1; . . . ; n, is an eigenvalue of A. It follows that

jA�1j ¼ max
i

ð1=jlijÞ:

209



Now, set V ¼ TpM, A ¼
ffiffiffiffiffi
Pr

p
B

k
ffiffiffiffiffi
Pr

p
Bk

, and let p vary in D to obtain

max
D

jA�1j2 ¼ max
D

�
max
i

1

jlij2
�

¼ max
i;D

1

l2i
�

Since li ¼ yi=
ffiffiffiffiffiffiffiffiffiffiffiP
j

y2j

r
, we conclude that

t ¼ max
i;D

�P
j

y2j =y
2
i

�
¼ max

i;D

1

l2i
¼ max

D

ffiffiffiffiffi
Pr

p
B

k
ffiffiffiffiffi
Pr

p
Bk

� ��1
�����

�����
2

:ð4Þ

Now we will go into the proof proper and will use an idea of Fischer-Colbrie and
Schoen [FC-S]. Actually, we will prove a slightly stronger theorem, namely if the area
of gðDÞ is smaller or equal than the area of a spherical cap Ct whose first eigenvalue for
the spherical Laplacian ~DD is t, then D is r-stable. Assume that area gðDÞe areaCt. Then,
since symmetrization of domains in the sphere does not increase eigenvalues, we obtain that
the first eigenvalue l1


gðDÞ

�
of gðDÞ satisfies l1


gðDÞ

�
f t. Let f be the first eigenfunction

of gðDÞ, that is, f > 0 in gðDÞ, f ¼ 0 in q

gðDÞ

�
and f satisfies

~DD f þ l1 f ¼ 0:

Let u ¼ f � g be defined in DHM and consider in M the pull-back metric ~ss. With
this metric, g:Mn ! Sn1 is a local isometry and u satisfies again ~DDuþ l1u ¼ 0. Since
detðdgÞ3 0, we have that gðintDÞH int


gðDÞ

�
, where intð Þ denotes the interior of the

enclosed set; it follows that u > 0 in (the open set) D. (Notice that u may be positive in
parts of qD so l1 is not necessarily the first eigenvalue of D.)

Since u > 0 in D and ~DDuþ l1u ¼ 0 we can use [FC-S], Corollary 1, to conclude that
the first eigenvalue of the operator ~DDþ l1 is nonnegative, that is,

inf
h

Ð
D

ð½~‘‘h2 � l1h
2Þ dS

� �
f 0;

where the infimum is taken over all Cy
0 ðDÞ functions that satisfy

Ð
D

h2 dS ¼ 1; here ~‘‘ is the

gradient, ½  is the norm of a vector, and dS is the volume element in the metric ~ss. Since
l1 f t, we obtain

inf
h

Ð
D

ð½~‘‘h2 � th2Þ dS
� �

f 0:

Observe now that dS ¼ jSnj dM. But the immersion is r-special, hence

jSnj ¼ ck
ffiffiffiffiffi
Pr

p
Bk2;

where c is a positive constant. It follows that
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inf
h

Ð
D

ð½~‘‘h2 � th2Þ
� �

ck
ffiffiffiffiffi
Pr

p
Bk2 dMf 0:

Now, by using (4), we obtain that for any vector X ¼ TpM,

½X 2 e

ffiffiffiffiffi
Pr

p
B

k
ffiffiffiffiffi
Pr

p
Bk

� ��1
" #2 ffiffiffiffiffi

Pr
p

BX

k
ffiffiffiffiffi
Pr

p
Bk

� �2
e t

ffiffiffiffiffi
Pr

p
BX

k
ffiffiffiffiffi
Pr

p
Bk

� �2
:

Thus

0e inf
h

Ð
D

ð½~‘‘h2 � th2Þck
ffiffiffiffiffi
Pr

p
Bk2 dM

� �

e inf
h

t

 Ð
D

�
½
ffiffiffiffiffi
Pr

p
B~‘‘h2

k
ffiffiffiffiffi
Pr

p
Bk2

ck
ffiffiffiffiffi
Pr

p
Bk2 � h2ck

ffiffiffiffiffi
Pr

p
Bk2

�
dM

!

¼ inf
h

tc
Ð
D

ð½
ffiffiffiffiffi
Pr

p
B~‘‘h2 � k

ffiffiffiffiffi
Pr

p
Bk2h2Þ dM

�
:

�

By Lemma 2.9, ~‘‘h ¼ B�2‘h, where ‘ is the gradient in the original metric. Further-
more Pr commutes with B and the norms of vectors in these two metrics are related by
½X  ¼ jBX j, with obvious notation. We finally obtain that

0e tc inf
h

Ð
D

ð½
ffiffiffiffiffi
Pr

p
B~‘‘h2 � k

ffiffiffiffiffi
Pr

p
Bk2h2Þ dM

� �
ð5Þ

¼ tc inf
h

Ð
D

ðj
ffiffiffiffiffi
Pr

p
‘hj2 � k

ffiffiffiffiffi
Pr

p
Bk2h2Þ dM

� �
:

Since the Jacobi operator is

Tru ¼ divðPr‘uÞ þ k
ffiffiffiffiffi
Pr

p
Bk2u;

the above inequality means that the first eigenvalue of the Jacobi operator Tr in D is non-
negative. This implies that Irðh; hÞf 0, for all h A Cy

0 ðDÞ. By Lemma 2.7, this is equi-
valent to the fact that Irðh; hÞ > 0, for all h A Cy

c ðDÞ, that is, D is r-stable as we wished to
prove. r

Remark 3.3. If Pr is negative definite �Pr ¼ Qr is positive definite. Since, in this
case,

k
ffiffiffiffiffiffi
Qr

p
Bk2 ¼

P
j

y2j ðrÞ;

it is easily seen that we can replace k
ffiffiffiffiffi
Pr

p
Bk2 by k

ffiffiffiffiffiffi
Qr

p
Bk2 throughout the above proof. In

this case, the operator Tr becomes
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Tru ¼ divðPr‘uÞ þ traceðPrB2Þu

¼ �fdivðQr‘uÞ þ traceðQrB2Þug:

Then inequality (5) with k
ffiffiffiffiffiffi
Qr

p
Bk2 means that the index form Ir is negative definite in

Cy
c ðDÞ. Thus, according to our definition, D is r-stable.

3.4. Proof of Theorem 1.6. Let again l1 be the first eigenvalue and f be the first
eigenfunction of gðDÞ for the spherical Laplacian; thus f > 0 on gðDÞ, f ¼ 0 in q


gðDÞ

�
and ~DDf þ l1 f ¼ 0 in gðDÞ. Since g restricted to D is a covering map onto gðDÞ, we have
that gðqDÞ ¼ q


gðDÞ

�
. Thus u ¼ f � g is positive in D, u ¼ 0 in qD and ~DDuþ l1u ¼ 0 in D.

By Stokes Theorem,

0 ¼
Ð
D

ð½~‘‘u2 � l1u
2Þ dS >

Ð
D

ð½~‘‘u2 � gu2Þck
ffiffiffiffiffi
Pr

p
Bk2 dM;

where in the last inequality we have used that l1 < g and that the immersion is r-special.

By using the definition of g and proceeding as in the proof of Theorem 1.3, we will
obtain that

1

g
¼ max

D

ffiffiffiffiffi
Pr

p
B

k
ffiffiffiffiffi
Pr

p
Bk

� �2

and that

ffiffiffiffiffi
Pr

p
BX

k
ffiffiffiffiffi
Pr

p
Bk

� �2
e

1

g
½X 2:

It follows that

0 >
Ð
D

ð½~‘‘u2 � gu2Þck
ffiffiffiffiffi
Pr

p
Bk2 dM

f
Ð
D

g
½
ffiffiffiffiffi
Pr

p
B~‘‘u2

k
ffiffiffiffiffi
Pr

p
Bk2

� gu2

 !
ck

ffiffiffiffiffi
Pr

p
Bk2 dM

¼ gc
Ð
D

ð½
ffiffiffiffiffi
Pr

p
B~‘‘u2 � k

ffiffiffiffiffi
Pr

p
Bk2u2Þ dM

¼ gc
Ð
D

ðj
ffiffiffiffiffi
Pr

p
‘uj2 � k

ffiffiffiffiffi
Pr

p
Bk2u2Þ dM:

Therefore, there exists a u A Cy
0 ðDÞ such that Irðu; uÞ < 0. By Lemma 2.7, this is equivalent

to the fact that there exists u A Cy
c ðDÞ such that Irðu; uÞ < 0, that is, D is r-unstable as we

wished to prove. r

Remark 3.5. An argument similar to that of Remark 3.3 applies here.

Remark 3.6. It follows from the proof that we can drop the condition on the
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restriction gjD being a covering map if we replace the condition on the first eigenvalue of
gðDÞ by a similar condition on the first eigenvalue of D. Namely, the following statement
holds: If the first eigenvalue of D for the Laplacian ~DD in the pull-back metric is smaller than
g, then D is r-unstable. Of course, the same remark applies to Corollary 1.7.

3.7. Proof that the estimate of Theorem 1.2 is sharp. We first recall that the support
function j ¼ hx;Ni of a hypersurface x:Mn ! Rnþ1 with Srþ1 ¼ const: satisfies (see [Ro],
last equation on p. 227)

Lrjþ

S1Srþ1 � ðrþ 2ÞSrþ2

�
j ¼ �ðrþ 1ÞSrþ1:

Here N is a unit normal vector and x is any position vector. In the situation of Theorem
1.3, rþ 1 ¼ n� 1, Srþ1 ¼ 0, and the above equation becomes

Lrj� ðrþ 2ÞSnj ¼ 0:

But this means that j satisfies the Jacobi equation (2).

Next, we look into the classification of rotation hypersurfaces x:Mn ! Rnþ1 with
Srþ1 ¼ 0 (see [HL2] or [P]). Following [HL2], we choose x1 as the rotation axis and let the
profile curve be given as a positive function xnþ1 ¼ f ðx1Þ; here ðx1; . . . ; xnþ1Þ are coor-
dinates in Rnþ1. It is shown that f is a convex function, symmetric relative to the axis xnþ1.
For case x:M 3 ! R4 with S2 ¼ 0, the profile curve is a parabola: f ðx1Þ ¼ 1þ ðx1Þ2=4. In
all other cases x:Mn ! Rnþ1 with Sn�1 ¼ 0 the profile curve behaves like a parabola and
goes to infinity with x1; more precisely,

f ðx1Þ ¼ Cjx1j
n�1
n�2


1þOðjxj�1Þ

�
; jx1j ! y;

where C is a positive constant.

From the above facts, we conclude that Lindelöf ’s method to obtain conjugate boun-
daries of a rotation minimal surface ([L]) works equally well in our case. For completeness,
we will present here a brief description of this method. Given a point p on the profile curve
C, we draw the tangent line t to C at p and let 0 be the intersection of t with the rotation
axis. From 0 we draw another tangent t1 to C that touches C at the point q. The boundaries
B1 and B2 generated by p and q as C goes about the rotation axis are easily seen to be
conjugate boundaries: just take the support function j ¼ hx;Ni, the position vector x
having 0 as origin and notice that the Jacobi field jN vanishes on B1 and B2 and nowhere
else in the region of M bounded by them.

By the same argument used in [BdC] for minimal surfaces, we can see that, by
choosing appropriately B1 and B2, an unstable domain of a rotation hypersurface with
Sn�1 ¼ 0 can be obtained whose spherical image has area that is larger than the area of a
hemisphere H of Sn1 and is as close as we wish to this area. Thus the estimate is sharp.

Remark 3.8. We owe the referee the following interesting observation. The rotational
3-hypersurface with vanishing scalar curvature, whose profile curve is f ðxÞ ¼ 1þ ðx2=4Þ, is
a time-symmetric t ¼ 0 slice of the 3þ 1 dimensional Schwarzschild metric for a static non-
rotating black hole of mass 1=2.
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3.9. Example. We now describe an example of an unstable domain D in a hyper-
surface x:M 3 ! R4 with S2 ¼ 0, S3 ¼ 0 and area gðDÞ ¼ 0. This was mentioned in the
Introduction and shows that some condition on the zeroes of S3 are necessary for the va-
lidity of Theorem 1.1.

Let x1; x2; x3; x4 be coordinates in R4 and letM 3 be a cylinder over a curve cðtÞ in the
plane x3x4, that is, M is generated by a plane Pt, parallel to the plane x1x2, that displaces
itself along the curve cðtÞ.

Choose an orthonormal frame e1; e2; e3; e4 along M with e1; e2 in the plane Pt, e3
tangent to cðtÞ and e4 normal to M. Then k1 ¼ k2 ¼ 0, k3 is the curvature of cðtÞ and

T1 f ¼ L1 f � 3S3 f ¼ L1 f ¼ divðP1‘f Þ:

Since P1 ¼ S1I � B we obtain that the eigenvalues of P1 are k3; k3; 0. Thus for DHM

and f with compact support in D we have

�
Ð
D

f T1 f dM ¼ �
Ð
D

f divðP1‘f Þ dM ¼
Ð
D

hP1‘f ;‘f i dMð6Þ

¼
Ð
D

k3jð‘f ÞPt j
2
dM

where we have used that ‘f ¼
P
fiei and denoted by ð‘f ÞPt the projection of ‘f over Pt.

Choose now a domain DHM bounded by two parallel planes Pt1 ;Pt2 and by the
intersections of Pt, t A ½t1; t2 with the planes x1 ¼ x2 ¼ 0 and x1 ¼ x2 ¼ h (a cylinder with
height h). Assume that k3 has one single zero in ½t1; t2 where it changes sign. Assume fur-
ther that an orientation has been fixed so thatÐ

D

H dM ¼
Ð
D

k3 dM > 0

and choose f so that its support is contained in that part of D where k3 < 0. Then, by (6)

Ið f ; f Þ ¼ �
Ð
D

f T1 f dM < 0:

Of course, by choosing f so that its support is contained in the part of D where k3 > 0, we
obtain that Ið f ; f Þ > 0.

Thus D is unstable and it is easily seen that this fact does not depend on the chosen
orientation. Since M 3 is a cylinder, the spherical image of D has area zero, and yet Theo-
rem 1.1 does not hold in this example. Notice that we can choose the curve cðtÞ so that the
example is graph over the 3-space x1; x2; x3.

4. Comments and questions

4.1. The proof of Theorem 1.3 works equally well if we consider Hrþ1 ¼ const > 0
rather than Hrþ1 ¼ 0. However, in order to make sure that Lr is elliptic, we must introduce
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the additional assumption that there is a point p AM such that all principal curvatures at
p are positive. (See [BC], Proposition 3.2. The Proposition is stated for compact hyper-
surfaces; the compactness, however, is only used to ensure the existence of a point where all
principal curvatures are positive.) In this case, Pr is always positive definite and the Jacobi
equation is again

Tr f ¼def Lr f þ ½
ffiffiffiffiffi
Pr

p
B2f ¼ 0:

Further details on the variational problem for Hrþ1 ¼ const can be found in [BC], [Re] or
[Ro].

The main issue here is that we have not been able to obtain explicit examples (except
the round sphere) of r-special hypersurfaces with Hrþ1 ¼ const > 0. To find out such exam-
ples might be an interesting question.

4.2. It is not clear what is the weakest assumption that we must set on the zeroes of
Hn for the validity of Theorem 1.3. As we have seen in Example 3.9, if Hn is identically zero
the theorem does not hold (the example was worked out for n ¼ 3 but a similar construction
can be made for an arbitrary n). We believe that the following is true: If the set of zeroes of
Hn has codimensionf 2 in Mn, and is contained in D, then Theorem 1.3 holds.

4.3. Probably the most interesting question about Theorem 1.2 is to determine which
complete hypersurfaces x:Mn ! Rnþ1 with Hn�1 ¼ 0 are stable (that is, each of its domain
is stable). Let us look into the case n ¼ 3, where we have some examples. If in Example 3.9
we take the base curve cðtÞ to have curvature k3ðtÞ > 0, then we have an example of a
complete stableM 3 HR4; however, if k3 changes sign, we have shown thatM 3 is unstable.
In analogy with the case of a complete minimal surface in R3, where minimality plus sta-
bility imply that the Gaussian curvature vanishes, we can ask whether the stability of a
complete x:M 3 ! R4 with H2 ¼ 0 implies that H3 is identically zero, or, more generally:
are the stable complete x:Mn ! Rnþ1 with Hn�1 ¼ 0 contained in the class of hypersurfaces
that have both Hn�1 ¼ 0 and Hn ¼ 0? If this is the case, we should be able to extract all
stable hypersurfaces from the above class.

We have reasons to believe that the following conjecture is true: there exists no com-
plete stable x:Mn ! Rnþ1 with Hn�1 ¼ 0 and Hn3 0 everywhere.

4.4. Let Mnþ1ðdÞ be a space of constant sectional curvature d, de 0, and let
x:Mn !Mnþ1ðdÞ be an r-special hypersurface with Hrþ1 ¼ 0 and Hn3 0 everywhere.
Then our proof of Theorem 1.3 works to show that if the first eigenvalue of the Laplacian
~ll1 of DHMn, in the metric d ;e defined at the end of Section 2, satisfies ~ll1 > t, where t
is defined in Theorem 1.3, then D is r-stable. We have only to observe that the Jacobi
operator is now Lr þ k

ffiffiffiffiffi
Pr

p
Bk2 þ d tracePr. Of course, a theorem like Theorem 1.2 (where

we replace the condition on the area of gðDÞ by the condition that ~ll1ðDÞ > n) also holds,
although we do not know if the estimate is sharp.

By the same token, our proof of Theorem 1.6 works to show that, in the above
situation, but with d > 0, if ~ll1ðDÞ < g, and g is defined as in Theorem 1.6, then D is
r-unstable.
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The question here is whether one can estimate ~ll1ðDÞ in terms of say,
Ð
D

Hn dM, or

some other geometric invariant associated to D. Probably it will be necessary to estimate
the sectional curvature of M in the metric d ;e. For that, one might use the expression
obtained for this sectional curvature in ([dCD], Theorem 1.2 (iii) and Remark (1.5)); in low
dimensions, this should be manageable. A further question is to extend Theorem 1.3 to the
case d > 0.
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