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Consider a smooth Jordan curve Γ in H3. What, and where, are the
H-surfaces with boundary Γ? If H is sufficiently small, H 6= 0, then it is
not difficult to find two small H-surfaces with boundary Γ (cf. Section
II). By H-surface we mean a surface of constant mean curvature H.

In this paper we will describe situations where we can find two solu-
tions. For example, if Γ is on a sphere of radius R, then there are two
H-surfaces in the ball bounded by the sphere (with boundary Γ) for any
H, 0 < H < tanh(R). In particular, for 0 < H ≤ 1. Using this fact, we
show that for any smooth Jordan curve Γ∞ at the sphere at infinity of
H3 (denoted S(∞)), there are two complete H-surfaces with asymptotic
boundary Γ∞, for any H, 0 < H < 1.

—————–

Hilário Alencar, University of Maceio, Alagoas (Brasil)
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Many of our results remain true in arbitrary dimension (Γ codimen-
sion two) with the solutions integral currents.

1. An existence Theorem

Let B be a domain in Hn+1 or Rn+1 with smooth boundary S and
assume S is mean convex;

H(S) = infx∈S H(x) > 0.

THEOREM 1. – Let Γ be a smooth codimension one submanifold of S
that is homologous to zero in S. Then for 0 < H < H(s), there are two
integral currents in B, with boundary Γ and mean curvature H, their
intersection is Γ.

Proof. – We will work with integral currents mod two. We refer to
integral n-currents mod two as n-chains and integral n+1-currents mod
two as domains. Their mass will be called area and volume respectively,
denoted by |M | and |Q|, M and n-chain, Q a domain.

Let S1 ⊂ S be a smooth submanifold with ∂S1 = Γ. Consider domains
Q in B with ∂Q = S1 ∪M , M an n-chain, ∂M = Γ and |M | ≤ |S1|. Let
J denote the functional on such domains Q:

Q 7→ nH|Q|+ |M |.
It is well known if Q is a minimum of this functional then at all smooth

points of M in the interior of B, M has mean curvature H [3]. We seek
a minimum of J with M − Γ contained in the interior of B.
Q and ∂Q have bounded mass, so the fundamental theorem of geo-

metric measure theory yields a limit Q of a sequence Qi, Qi ⊂ B,
∂Qi = S1 ∪ Mi, |Mi| ≤ |S1|, such that J(Qi) converges to its mini-
mum value [2]. Since area and volume are lower semi continuous, Q is
a minimum of the functional J .

In general, such a Q may touch the obstacle; here the obstacle is
S, and at such points M is not of constant mean curvature H. But
since H < H0(S), M can not touch S, except along Γ. This is proved
in Lemma 5 of [3] in dimension three but the same proof works in all
dimensions; if M touched S one could strictly reduce J(Q) by cutting
off a piece of Q is a neighborhood of the point of contact.

62



This gives us an n-chain M , ∂M = Γ, and at all smooth points of
interior M , M has mean curvature H.

Now Γ is homologous to zero in S, hence in B, so there is a least area
n-chain

∑
, ∂
∑

= Γ, interior
∑
⊂ B.

∑
is a solution to the classical

Plateau problem in the setting of geometric measure theory, with S a
barrier (since S is mean convex).

Let E1, E2 be the connected components of B −
∑

, ∂E1 = S1 ∪
∑

.
Notice that the M we obtained above by minimizing J , is contained in
E1. For it Q1 satisfies ∂Q1 = S1 ∪M with Q1 ∩

∑
6= ∅, one can cut

off the part of Q1 outside E1 and strictly reduce J ; this strictly reduces
volume of Q1 and the part of M in E2 that one replaces by a part of

∑
,

with the same boundary, has at least as much area; cf. Fig. 1.

Fig. 1

Now to obtain a distinct n-chain M2 in B, ∂M2 = Γ, M2 an H-surface,
one begins with the other component S2 of S − Γ and one minimizes J
among domains Q with ∂Q = M + S2, |M | ≤ |S2|. The minimum is
then contained in E2, which proves Theorem 1.

Remark. – If one assumes Γ is a oriented codimension two closed
submanifold of B (not necessarily on ∂B), homologous to zero in B,
then one always has two H-chains in B with boundary Γ, for 0 < H <
H(∂B) (but one no longer controls where they are). One does the same
proof as above, replacing the mass of Q by the algebraic volume of Q,
i.e., one chooses a fixed (oriented) n-chain M0 in B, ∂M0 = Γ, and
for any M1 with boundary Γ, |Q| becomes the algebraic volume of the
domain bounded by M0 + M1 [3]. Then a minimum of the functional
|M1| + nH|Q| yields an H-surface M1 in B with boundary Γ. Now
change the orientation of M0 and minimize the new functional (only
the algebraic volume term changes). This yields a second H-surface M2

with ∂M2 = Γ and M1 is geometrically distinct from M2 (if |Q(M1)| < 0
then |Q(M2)| > 0.
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Since compact balls in Hn+1 always have H > 1, one can always find
two distinct H-surfaces with boundary Γ, for 0 < H ≤ 1.

COROLLARY 1.1 – Suppose B = B(R) is the ball of radius R and
r < R. Let (Q,M) be a minimum of J given by Theorem 1. Then the
area of M ∩B(r) is at most |S(r)|, (here S(r) = ∂B(r)).

Proof. – Let Q̃ be the domain Q ∩ (B(R) − intB(r)). Then ∂Q̃ =

S1 ∪ M̃ ∪ S̃ where S̃ ⊂ S(r),

∂S̃ = ∂(M ∩B(r)) and M̃ = M ∩ (B(R)−B(r)).

If |M∩B(r)| > |S̃| then |Q̃| < |Q| and |M̃∪S̃| < |M | hence J(Q̃) < J(Q),

which contradicts Q being a minimum of J . Thus |M ∩B(r)| ≤ |S̃| and

|S̃| ≤ |S(r)|.

2. Two small H-surfaces for H small

An H-surface M with boundary Γ is called a small H-surface if M
is contained in some ball B(r) with r < 1

tanhH (or r < 1
H in euclidean

space). From the maximum principle it follows that M ⊂
⋂
B∈AB,

where A is the family of balls B(ρ), ρ ≤ 1
tanhH , such that Γ ⊂ B(ρ).

THEOREM 2. – Let Γ ⊂ Hn+1 or (or Rn+1, n ≤ 6, Γ a smooth closed
condimension two submanifold. Then for H sufficiently small, there
exist at least two small H-surfaces with boundary Γ.

Proof. Let
∑

be an oriented n-manifold in Hn+1, ∂
∑

= Γ and
∑

of
least area; the geometric measure theory solution to Plateau’s problem
has no singularities when n ≤ 6 so

∑
is smooth.

Let 0 < α < 1 and C2,α
0 (

∑
) denote the functions u on

∑
of class

C2,α which vanish on ∂
∑

= Γ. Let Cα(
∑

) denote the functions on
∑

of class Cα.
One has the mean curvature map of normal variations of

∑
:

H : C2,α
0

(∑)
→ Cα

(∑)
,

H(u)(x) = H(expx(u(x)n(x))),
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n(x) a unit normal vector field along
∑

. H is the mean curvature of the
surface in the normal bundle of

∑
obtained by going a distance u(x)

form x, along the geodesic at x having n(x) as tangent. H is well defined
in a neighborhood of u = 0; i.e. for small variations of

∑
.

Now H is a map between Banach spaces and L = dH at u = 0 is
the linearized operator of the mean curvature of

∑
. This is an elliptic

operator and its kernel is trivial since
∑

is area minimizing. Thus L
is an isomorphism and H is a diffeomorphism of a neighborhood U of
u = 0 to a neighborhood V of H(0) = 0. For t sufficiently small, one
has the constant functions t and −t in V hence H−1(t) and H−1(−t)
are two t-surfaces for t small.

Remark. Notice that the above argument works for any elliptic dif-
ferential operator of order two on

∑
with no Jacobi fields; i.e. non

trivial functions in the kernel of the linearized operator. For example,
any compact surface

∑
⊂ H3, ∂

∑
= Γ 6= φ, with constant Gaussian

curvature between – 1 and 0 [5]. One obtains a foliation of t-surfaces
with boundary Γ, by letting t→ 0.

3. H-surfaces with asymptotic boundary at infinity

We now suppose Γ is a smooth closed codimension one submanifold of
S∞, the sphere at infinity of Hn+1. M. Anderson has proved that there is
a minimal integral n-current in Hn+1 whose asymptotic boundary is Γ;
i.e. one can solve the Plateau problem at ∞ [1]. We will prove that for
0 < H < 1, there are at least two H integral n-currents with asymptotic
boundary Γ. Notice that for H ≥ 1, there is no embedded H-surface
M with ∂∞M = Γ: M would separate Hn+1 into two components, let
A be the component to which the mean curvature of M points. Let z
be a point of S∞ − Γ in the asymptotic boundary of A. Let S(t) be
the horospheres tangent to S∞ at z, parametrized so that S(t) → z as
t→ 0. Then for t near 0, S(t)∩M = ∅. Let t increase until S(t) touches
M for the first time. Then the maximum principle at this contact point
yields M = S(t); a contradiction.

THEOREM 3. – Let Γ ⊂ S(∞) be as above, and 0 < H < 1. There are
at least two H-chains in Hn+1, with asymptotic boundary Γ.

65



Before proving Theorem 3 we need some preliminaries. Let Ω1 and Ω2

be the connected components of S∞−Γ. Let B1 be an equidistant ball in
Hn+1 with ∂∞(B1) ⊂ int Ω1 and ∂B1 = S1 an equidistant sphere of mean
curvature H, whose mean curvature vector points to the exterior of B1

(cf. Fig. 2). Similarly let B2 be an equidistant ball with ∂∞B2 ⊂ int Ω2,
∂B2 = S2 an equidistant sphere of mean curvature H, whose mean
curvature vector points to the interior of B2.

Fig. 2

LEMMA 3.1. Let M be a compact connected n-current of constant mean
curvature H and ∂M contained in the domain E of Hn+1 bounded by
S1 ∪ S2. Then M ⊂ E as well.

Proof of 3.1. – Assume on the contrary that M∩ext (B2) 6= φ. Notice
that B2 is foliated by hypersurfaces L(t), 2 ≤ t < ∞, with L(2) = S2

and L(t) isometric to S2. To see this one fixes a point p ∈ ∂∞(int B1)
and the homotheties of Hn+1 from p (in the upper-half space model of
Hn+1) induce isometries of Hn+1 and the images of S2 foliate B2.

Now M is compact so there is some L(t), for t large, such that L(t)∩
M = φ. Let t decrease to 2 and then by compacity of M there is a
first point of contact of an L(s) with M . At this first point of contact
the mean curvature vectors of L(s) and M are equal, since each L(t) for
t > s, has a mean curvature vector that points into the component of
Hn+1 − L(t) containing M . But then the maximum principle for
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constant mean curvature hypersurfaces implies M = L(s) and this is a
contradiction since ∂M ⊂ int E.

Similarly, M can not enter int B1 so ∂E = S1 ∪ S2 is a barrier for
solutions to the Plateau problem we are considering, for boundary data
inside E.

Proof of Theorem 3 – Let Γ be an n − 1 submanifold of infinity.
Choose B1, B2 (the equidistant balls of our previous discussion) so that
Γ is contained in int ∂∞(E). Let p ∈ E and let C(Γ) denote the cone in
Hn+1 composed of all geodesics starting at p and asymptotic to a point
of Γ. Since E is mean convex, we have C(Γ) ⊂ E (cf. Fig. 3).

Fig. 3

We consider geodesic balls B(r) of Hn+1, centered at p, and denote
by Γ(r) the cycle C(Γ) ∩ S(r), S(r) = ∂B(r).

Choose r0 sufficiently large so that B(r0) has a non trivial intersec-
tion with the equidistant spheres S1 and S2, i.e., we require that B(r0)
intersects each S1, S2 is an open set. Clearly for r > r0, ∂(B(r) ∩ S1)
is a topological n − 1 sphere that generates the n − 1 dimensional ho-
mology of E − B(r0). Each such cycle ∂(B(r) ∩ S1), for r > r0, is not
homologous to zero in E −B(r0).

Next apply Theorem 1 to Γ(R) for R > r0, to obtain an n-chain mod
2, M(R) contained in B(R), such that M(R) has mean curvature H and
∂M(R) = Γ(R). By Lemma 3.1, M(R) ⊂ E, since Γ(R) ⊂ E.
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Since Γ(R) is not null homologous in E −B(r0), it follows that M(R)∩
B(r0) 6= ∅. By Corollary 1.1, one has uniform area bounds for M(R) ∩
B(r0) that depend only on r0; i.e. there exists C(r0) > 0 such that

|M(R) ∩B(r0)| ≤ C(r0), for R > r0.

Observe that we also have uniform lower area bounds for |M(R) ∩
B(r0)| depending only upon r0.

Indeed, M(R) must intersect each geodesic of Hn+1 issue from a point
of B(r0)∩S1 and orthogonal to S1 at this point. Otherwise Γ(R) would
be null homologous in E −B(r0), which is not the case. Now the (geo-
desic) projection of M(R)∩B(r0) onto S1 is of bounded area distortion;
the amount one can increase area of M(R)∩B(r0) is bounded above by
a constant depending only upon S1, S2 and dist (S1, S2). Hence there
exists a K(r0) > 0, and

|M(R) ∩B(r0)| ≥ K(r0)|B(r0) ∩ S1| > 0,

for all R > r0.
Since one has uniform area bounds above and below for M(R)∩B(r0),

the compactness theorem for integral currents mod two yields a subse-
quence M(Ri), R → ∞, such that M(Ri) ∩ B(r0) converges in B(r0)
to a constant mean curvature n-chain. Now repeat the above argument
with the sequence Ri, working in the ball B(r0 + 1) to obtain a sub-
sequence converging to a constant mean curvature n-chain B(r0 + 1).
Continue inductively in each B(r0 + n) and then take a diagonal subse-
quence; this subsequence converges to a solution to the Plateau problem.

Now it is simple two construct two complete solutions M1, M2 when
H 6= 0. First construct a complete area minimizing current

∑
with

asymptotic boundary Γ. Then for H 6= 0, construct M1 in one of the
components of Hn+1 −

∑
so that M1 has mean curvature H and as-

ymptotic boundary Γ. M2 is then constructed in the other component
of Hn+1 −

∑
. This completes the proof of Theorem 3.

Remark 1. – B. Nelli and J. Spruck have studied the non paramet-
ric problem in Hn+1 [4]. They establish the existence of a graph (in a
suitable coordinate system) of prescribed mean curvature H < 1 and
Γ∞ ⊂ S∞ “mean convex” in a particular model of S∞ (this is not in-
variant by isometry).
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2. After a first preprint of this paper appeared we learned of a preprint
of [6]. He proves the existence of one integral n-current M , ∂∞M = Γ∞,
M an H-surface, for any H, 0 < H < 1, and he studies its regularity.
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