SOME REMARKS ON THE EXISTENCE OF HYPERSURFACES OF CONSTANT MEAN CURVATURE WITH A GIVEN BOUNDARY, OR ASYMPTOTIC BOUNDARY, IN HYPERBOLIC SPACE

HILÁRIO ALENCAR and HAROLD ROSENBERG
[University of Maceio]
[Université Paris - 7]

Consider a smooth Jordan curve Γ in \mathbf{H}^{3}. What, and where, are the H-surfaces with boundary Γ ? If H is sufficiently small, $H \neq 0$, then it is not difficult to find two small H-surfaces with boundary Γ ($c f$. Section II). By H-surface we mean a surface of constant mean curvature H.

In this paper we will describe situations where we can find two solutions. For example, if Γ is on a sphere of radius R, then there are two H-surfaces in the ball bounded by the sphere (with boundary Γ) for any $H, 0<H<\tanh (R)$. In particular, for $0<H \leq 1$. Using this fact, we show that for any smooth Jordan curve Γ_{∞} at the sphere at infinity of \mathbf{H}^{3} (denoted $S(\infty)$), there are two complete H-surfaces with asymptotic boundary Γ_{∞}, for any $H, 0<H<1$.

[^0]Many of our results remain true in arbitrary dimension (Γ codimension two) with the solutions integral currents.

1. An existence Theorem

Let B be a domain in \mathbf{H}^{n+1} or \mathbf{R}^{n+1} with smooth boundary S and assume S is mean convex;

$$
H(S)=\inf _{x \in S} H(x)>0
$$

Theorem 1. - Let Γ be a smooth codimension one submanifold of S that is homologous to zero in S. Then for $0<H<H(s)$, there are two integral currents in B, with boundary Γ and mean curvature H, their intersection is Γ.

Proof. - We will work with integral currents mod two. We refer to integral n-currents mod two as n-chains and integral $n+1$-currents mod two as domains. Their mass will be called area and volume respectively, denoted by $|M|$ and $|Q|, M$ and n-chain, Q a domain.

Let $S_{1} \subset S$ be a smooth submanifold with $\partial S_{1}=\Gamma$. Consider domains Q in B with $\partial Q=S_{1} \cup M, M$ an n-chain, $\partial M=\Gamma$ and $|M| \leq\left|S_{1}\right|$. Let J denote the functional on such domains Q :

$$
Q \mapsto n H|Q|+|M| .
$$

It is well known if Q is a minimum of this functional then at all smooth points of M in the interior of B, M has mean curvature H [3]. We seek a minimum of J with $M-\Gamma$ contained in the interior of B.
Q and ∂Q have bounded mass, so the fundamental theorem of geometric measure theory yields a limit Q of a sequence $Q_{i}, Q_{i} \subset B$, $\partial Q_{i}=S_{1} \cup M_{i},\left|M_{i}\right| \leq\left|S_{1}\right|$, such that $J\left(Q_{i}\right)$ converges to its minimum value [2]. Since area and volume are lower semi continuous, Q is a minimum of the functional J.

In general, such a Q may touch the obstacle; here the obstacle is S, and at such points M is not of constant mean curvature H. But since $H<H_{0}(S), M$ can not touch S, except along Γ. This is proved in Lemma 5 of [3] in dimension three but the same proof works in all dimensions; if M touched S one could strictly reduce $J(Q)$ by cutting off a piece of Q is a neighborhood of the point of contact.

This gives us an n-chain $M, \partial M=\Gamma$, and at all smooth points of interior M, M has mean curvature H.

Now Γ is homologous to zero in S, hence in B, so there is a least area n-chain $\sum, \partial \sum=\Gamma$, interior $\sum \subset B . \sum$ is a solution to the classical Plateau problem in the setting of geometric measure theory, with S a barrier (since S is mean convex).

Let E_{1}, E_{2} be the connected components of $B-\sum, \partial E_{1}=S_{1} \cup \sum$. Notice that the M we obtained above by minimizing J, is contained in E_{1}. For it Q_{1} satisfies $\partial Q_{1}=S_{1} \cup M$ with $Q_{1} \cap \sum \neq \emptyset$, one can cut off the part of Q_{1} outside E_{1} and strictly reduce J; this strictly reduces volume of Q_{1} and the part of M in E_{2} that one replaces by a part of \sum, with the same boundary, has at least as much area; cf. Fig. 1.

Fig. 1
Now to obtain a distinct n-chain M_{2} in $B, \partial M_{2}=\Gamma, M_{2}$ an H-surface, one begins with the other component S_{2} of $S-\Gamma$ and one minimizes J among domains Q with $\partial Q=M+S_{2},|M| \leq\left|S_{2}\right|$. The minimum is then contained in E_{2}, which proves Theorem 1.

Remark. - If one assumes Γ is a oriented codimension two closed submanifold of B (not necessarily on ∂B), homologous to zero in B, then one always has two H-chains in B with boundary Γ, for $0<H<$ $H(\partial B)$ (but one no longer controls where they are). One does the same proof as above, replacing the mass of Q by the algebraic volume of Q, i.e., one chooses a fixed (oriented) n-chain M_{0} in $B, \partial M_{0}=\Gamma$, and for any M_{1} with boundary $\Gamma,|Q|$ becomes the algebraic volume of the domain bounded by $M_{0}+M_{1}$ [3]. Then a minimum of the functional $\left|M_{1}\right|+n H|Q|$ yields an H-surface M_{1} in B with boundary Γ. Now change the orientation of M_{0} and minimize the new functional (only the algebraic volume term changes). This yields a second H-surface M_{2} with $\partial M_{2}=\Gamma$ and M_{1} is geometrically distinct from M_{2} (if $\left|Q\left(M_{1}\right)\right|<0$ then $\left|Q\left(M_{2}\right)\right|>0$.

Since compact balls in \mathbf{H}^{n+1} always have $H>1$, one can always find two distinct H-surfaces with boundary Γ, for $0<H \leq 1$.

Corollary 1.1 - Suppose $B=B(R)$ is the ball of radius R and $r<R$. Let (Q, M) be a minimum of J given by Theorem 1. Then the area of $M \cap B(r)$ is at most $|S(r)|$, (here $S(r)=\partial B(r)$).

Proof. - Let \tilde{Q} be the domain $Q \cap(B(R)-\operatorname{int} B(r))$. Then $\partial \tilde{Q}=$ $S_{1} \cup \tilde{M} \cup \tilde{S}$ where $\tilde{S} \subset S(r)$,

$$
\partial \tilde{S}=\partial(M \cap B(r)) \quad \text { and } \quad \tilde{M}=M \cap(B(R)-B(r))
$$

If $|M \cap B(r)|>|\tilde{S}|$ then $|\tilde{Q}|<|Q|$ and $|\tilde{M} \cup \tilde{S}|<|M|$ hence $J(\tilde{Q})<J(Q)$, which contradicts Q being a minimum of J. Thus $|M \cap B(r)| \leq|\tilde{S}|$ and $|\tilde{S}| \leq|S(r)|$.

2. Two small H-surfaces for H small

An H-surface M with boundary Γ is called a small H-surface if M is contained in some ball $B(r)$ with $r<\frac{1}{\tanh H}$ (or $r<\frac{1}{H}$ in euclidean space). From the maximum principle it follows that $M \subset \bigcap_{B \in \mathcal{A}} B$, where \mathcal{A} is the family of balls $B(\rho), \rho \leq \frac{1}{\tanh H}$, such that $\Gamma \subset B(\rho)$.

Theorem 2. - Let $\Gamma \subset \mathbf{H}^{n+1}$ or (or $\mathbf{R}^{n+1}, n \leq 6, \Gamma$ a smooth closed condimension two submanifold. Then for H sufficiently small, there exist at least two small H-surfaces with boundary Γ.

Proof. Let \sum be an oriented n-manifold in $\mathbf{H}^{n+1}, \partial \sum=\Gamma$ and \sum of least area; the geometric measure theory solution to Plateau's problem has no singularities when $n \leq 6$ so \sum is smooth.

Let $0<\alpha<1$ and $C_{0}^{2, \alpha}\left(\sum\right)$ denote the functions u on \sum of class $C^{2, \alpha}$ which vanish on $\partial \sum=\Gamma$. Let $C^{\alpha}\left(\sum\right)$ denote the functions on \sum of class C^{α}.

One has the mean curvature map of normal variations of \sum :

$$
\begin{gathered}
H: C_{0}^{2, \alpha}\left(\sum\right) \rightarrow C^{\alpha}\left(\sum\right), \\
H(u)(x)=H\left(\exp _{x}(u(x) n(x))\right),
\end{gathered}
$$

$n(x)$ a unit normal vector field along $\sum . H$ is the mean curvature of the surface in the normal bundle of \sum obtained by going a distance $u(x)$ form x, along the geodesic at x having $n(x)$ as tangent. H is well defined in a neighborhood of $u=0$; i.e. for small variations of \sum.

Now H is a map between Banach spaces and $L=d H$ at $u=0$ is the linearized operator of the mean curvature of \sum. This is an elliptic operator and its kernel is trivial since \sum is area minimizing. Thus L is an isomorphism and H is a diffeomorphism of a neighborhood \mathcal{U} of $u=0$ to a neighborhood V of $H(0)=0$. For t sufficiently small, one has the constant functions t and $-t$ in V hence $H^{-1}(t)$ and $H^{-1}(-t)$ are two t-surfaces for t small.

Remark. Notice that the above argument works for any elliptic differential operator of order two on \sum with no Jacobi fields; i.e. non trivial functions in the kernel of the linearized operator. For example, any compact surface $\sum \subset \mathbf{H}^{3}, \partial \sum=\Gamma \neq \phi$, with constant Gaussian curvature between -1 and 0 [5]. One obtains a foliation of t-surfaces with boundary Γ, by letting $t \rightarrow 0$.

3. H-surfaces with asymptotic boundary at infinity

We now suppose Γ is a smooth closed codimension one submanifold of S_{∞}, the sphere at infinity of \mathbf{H}^{n+1}. M. Anderson has proved that there is a minimal integral n-current in \mathbf{H}^{n+1} whose asymptotic boundary is Γ; i.e. one can solve the Plateau problem at ∞ [1]. We will prove that for $0<H<1$, there are at least two H integral n-currents with asymptotic boundary Γ. Notice that for $H \geq 1$, there is no embedded H-surface M with $\partial_{\infty} M=\Gamma: M$ would separate \mathbf{H}^{n+1} into two components, let A be the component to which the mean curvature of M points. Let z be a point of $S_{\infty}-\Gamma$ in the asymptotic boundary of A. Let $S(t)$ be the horospheres tangent to S_{∞} at z, parametrized so that $S(t) \rightarrow z$ as $t \rightarrow 0$. Then for t near $0, S(t) \cap M=\emptyset$. Let t increase until $S(t)$ touches M for the first time. Then the maximum principle at this contact point yields $M=S(t)$; a contradiction.

Theorem 3. - Let $\Gamma \subset S(\infty)$ be as above, and $0<H<1$. There are at least two H-chains in \mathbf{H}^{n+1}, with asymptotic boundary Γ.

Before proving Theorem 3 we need some preliminaries. Let Ω_{1} and Ω_{2} be the connected components of $S_{\infty}-\Gamma$. Let B_{1} be an equidistant ball in \mathbf{H}^{n+1} with $\partial_{\infty}\left(B_{1}\right) \subset$ int Ω_{1} and $\partial B_{1}=S_{1}$ an equidistant sphere of mean curvature H, whose mean curvature vector points to the exterior of B_{1} (cf. Fig. 2). Similarly let B_{2} be an equidistant ball with $\partial_{\infty} B_{2} \subset$ int Ω_{2}, $\partial B_{2}=S_{2}$ an equidistant sphere of mean curvature H, whose mean curvature vector points to the interior of B_{2}.

Lemma 3.1. Let M be a compact connected n-current of constant mean curvature H and ∂M contained in the domain E of \mathbf{H}^{n+1} bounded by $S_{1} \cup S_{2}$. Then $M \subset E$ as well.

Proof of 3.1. - Assume on the contrary that $M \cap \operatorname{ext}\left(B_{2}\right) \neq \phi$. Notice that B_{2} is foliated by hypersurfaces $L(t), 2 \leq t<\infty$, with $L(2)=S_{2}$ and $L(t)$ isometric to S_{2}. To see this one fixes a point $p \in \partial_{\infty}\left(\right.$ int $\left.B_{1}\right)$ and the homotheties of \mathbf{H}^{n+1} from p (in the upper-half space model of \mathbf{H}^{n+1}) induce isometries of \mathbf{H}^{n+1} and the images of S_{2} foliate B_{2}.

Now M is compact so there is some $L(t)$, for t large, such that $L(t) \cap$ $M=\phi$. Let t decrease to 2 and then by compacity of M there is a first point of contact of an $L(s)$ with M. At this first point of contact the mean curvature vectors of $L(s)$ and M are equal, since each $L(t)$ for $t>s$, has a mean curvature vector that points into the component of $\mathbf{H}^{n+1}-L(t)$ containing M. But then the maximum principle for
constant mean curvature hypersurfaces implies $M=L(s)$ and this is a contradiction since $\partial M \subset$ int E.

Similarly, M can not enter int B_{1} so $\partial E=S_{1} \cup S_{2}$ is a barrier for solutions to the Plateau problem we are considering, for boundary data inside E.

Proof of Theorem 3 - Let Γ be an $n-1$ submanifold of infinity. Choose B_{1}, B_{2} (the equidistant balls of our previous discussion) so that Γ is contained in int $\partial_{\infty}(E)$. Let $p \in E$ and let $C(\Gamma)$ denote the cone in \mathbf{H}^{n+1} composed of all geodesics starting at p and asymptotic to a point of Γ. Since E is mean convex, we have $C(\Gamma) \subset E$ (cf. Fig. 3).

Fig. 3
We consider geodesic balls $B(r)$ of \mathbf{H}^{n+1}, centered at p, and denote by $\Gamma(r)$ the cycle $C(\Gamma) \cap S(r), S(r)=\partial B(r)$.

Choose r_{0} sufficiently large so that $B\left(r_{0}\right)$ has a non trivial intersection with the equidistant spheres S_{1} and S_{2}, i.e., we require that $B\left(r_{0}\right)$ intersects each S_{1}, S_{2} is an open set. Clearly for $r>r_{0}, \partial\left(B(r) \cap S_{1}\right)$ is a topological $n-1$ sphere that generates the $n-1$ dimensional homology of $E-B\left(r_{0}\right)$. Each such cycle $\partial\left(B(r) \cap S_{1}\right)$, for $r>r_{0}$, is not homologous to zero in $E-B\left(r_{0}\right)$.

Next apply Theorem 1 to $\Gamma(R)$ for $R>r_{0}$, to obtain an n-chain mod $2, M(R)$ contained in $B(R)$, such that $M(R)$ has mean curvature H and $\partial M(R)=\Gamma(R)$. By Lemma 3.1, $M(R) \subset E$, since $\Gamma(R) \subset E$.

Since $\Gamma(R)$ is not null homologous in $E-B\left(r_{0}\right)$, it follows that $M(R) \cap$ $B\left(r_{0}\right) \neq \emptyset$. By Corollary 1.1, one has uniform area bounds for $M(R) \cap$ $B\left(r_{0}\right)$ that depend only on r_{0}; i.e. there exists $C\left(r_{0}\right)>0$ such that

$$
\left|M(R) \cap B\left(r_{0}\right)\right| \leq C\left(r_{0}\right), \quad \text { for } \quad R>r_{0} .
$$

Observe that we also have uniform lower area bounds for $\mid M(R) \cap$ $B\left(r_{0}\right)$ depending only upon r_{0}.

Indeed, $M(R)$ must intersect each geodesic of \mathbf{H}^{n+1} issue from a point of $B\left(r_{0}\right) \cap S_{1}$ and orthogonal to S_{1} at this point. Otherwise $\Gamma(R)$ would be null homologous in $E-B\left(r_{0}\right)$, which is not the case. Now the (geodesic) projection of $M(R) \cap B\left(r_{0}\right)$ onto S_{1} is of bounded area distortion; the amount one can increase area of $M(R) \cap B\left(r_{0}\right)$ is bounded above by a constant depending only upon S_{1}, S_{2} and dist (S_{1}, S_{2}). Hence there exists a $K\left(r_{0}\right)>0$, and

$$
\left|M(R) \cap B\left(r_{0}\right)\right| \geq K\left(r_{0}\right)\left|B\left(r_{0}\right) \cap S_{1}\right|>0,
$$

for all $R>r_{0}$.
Since one has uniform area bounds above and below for $M(R) \cap B\left(r_{0}\right)$, the compactness theorem for integral currents mod two yields a subsequence $M\left(R_{i}\right), R \rightarrow \infty$, such that $M\left(R_{i}\right) \cap B\left(r_{0}\right)$ converges in $B\left(r_{0}\right)$ to a constant mean curvature n-chain. Now repeat the above argument with the sequence R_{i}, working in the ball $B\left(r_{0}+1\right)$ to obtain a subsequence converging to a constant mean curvature n-chain $B\left(r_{0}+1\right)$. Continue inductively in each $B\left(r_{0}+n\right)$ and then take a diagonal subsequence; this subsequence converges to a solution to the Plateau problem.

Now it is simple two construct two complete solutions M_{1}, M_{2} when $H \neq 0$. First construct a complete area minimizing current \sum with asymptotic boundary Γ. Then for $H \neq 0$, construct M_{1} in one of the components of $\mathbf{H}^{n+1}-\sum$ so that M_{1} has mean curvature H and asymptotic boundary $\Gamma . M_{2}$ is then constructed in the other component of $\mathbf{H}^{n+1}-\sum$. This completes the proof of Theorem 3 .

Remark 1. - B. Nelli and J. Spruck have studied the non parametric problem in \mathbf{H}^{n+1} [4]. They establish the existence of a graph (in a suitable coordinate system) of prescribed mean curvature $H<1$ and $\Gamma_{\infty} \subset S_{\infty}$ "mean convex" in a particular model of S_{∞} (this is not invariant by isometry).
2. After a first preprint of this paper appeared we learned of a preprint of [6]. He proves the existence of one integral n-current $M, \partial_{\infty} M=\Gamma_{\infty}$, M an H-surface, for any $H, 0<H<1$, and he studies its regularity.

References

[1] Anderson (M. T.) - Complete minimal varieties in hyperbolic space, Invent. Math., Vol. 69, 1982, p. 477-494.
[2] Federer (H.) - Geometric Measure Theory. - Berlin, Springer, 1979.
[3] Gulliver (R. D. H.) - The Plateau problem for surfaces of prescribed mean curvature in a Riemannian manifold, J. Diff. Geom., Vol. 8, 1973, p. 317-330.
[4] Nelli (B.) and Spruck (J.) - On existence and uniqueness of mean curvature hypersurfaces in hyperbolic space (Preprint).
[5] Rosenberg (H.) and Spruck (J.) - On the existence of convex hypersurfaces of constant Gaussian curvature in hyperbolic space, Journ. Diff. Geom., Vol. 40, 1994, p. 379-409.
[6] Tonegawa (Y.) - Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space (Preprint).

[^0]: Hilário Alencar, University of Maceio, Alagoas (Brasil)
 Harold Rosenberg, Mathématiques, Université Paris - 7, 2, Place Jussieu, 75251 Paris Cedex 05.
 Hilário Alencar and Harold Rosenberg were partially supported by the National Council for Scientific and Technological Development - CNPq of Brazil.

