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ABSTRACT

We show that a weakly stable complete noncompact hypersurface Mn of Rn+1, n ≤ 5, with constant mean
curvature is a hyperplane provided certain conditions hold.
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INTRODUCTION

We want to consider the following question. In (Alencar & do Carmo, (1994), Theorem 4) we proved a

result on strongly stable hypersurfaces of Rn+1 with constant mean curvature H. The question is wether
the theorem can be extended for the weakly stable case. We recall that M is weakly stable if for all
piecewise smooth functions f : M → R with compact support and mean value zero, i.e.,

∫
M fdM = 0, we

have ∫
M
|∇f |2 ≥

∫
M
|A|2f2dM.

Here |∇f |2 is the gradient of f in the induced metric and |A|2 is the square of the norm of the linear map
A associated to the second fundamental form.

We start with a proposition that will give a test function for weak stability.

PROPOSITION 1. Let M be a complete noncompact Riemannian manifold, and let

g : M → R, g ≥ 0,

be a C∞ function. Let x0 ∈ M and denote by ρ(x) = d(x, x0), where d is the geodesic distance in M. Then
there exists a function

ξ ∈ C0
0 (M),

ξ piecewise linear, with ξ(x) ≤ 1 if ρ(x) ≤ R (R a fixed number),

ξ(x) = 0 if ρ(x) ≥ 4R,

|∇ξ| or bounded, and
∫
M gξ = 0.

——————–
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PROOF. Choose 0 < δ ≤ R/4, and a > 0. Define a family ξa of functions parametrized by a as
follows:

ξa(x) = 1, 0 ≤ x ≤ R− δ,

ξa(x) =
R− x
δ

, R− δ ≤ x ≤ R,

ξa(x) = 0, R ≤ x ≤ 2R− δ,

ξa(x) =
(2R− δ)a− ax

δ
, 2R− δ ≤ x ≤ 2R,

ξa(x) = −a, 2R ≤ x ≤ 3R,

ξa(x) =
ax− (3R + δ)

δ
, 3R ≤ x ≤ 3R + δ,

ξa(x) = 0, 3R + δ ≤ x ≤ ∞
Then∫

M

gξa =

∫
B(R)

gξa +

∫
B(2R)−B(2R−δ)

gξa − a
∫
B(3R)−B(2R)

g +

∫
B(3R+δ)−B(3R)

gξa.

The first term is positive and the last three terms are negative. Clearly, if a is small enough,
the integral is positive and if a is large the integral is negative. Thus there exists an a such that∫
M
gξa = 0. Furthermore, since

0 =

∫
M

gξa ≤
∫
B(R)

g − a
∫
B(3R)−B(2R)

g,

such an a is bounded by

a ≤
∫
B(R)

g/

∫
B(3R)−B(2R)

g.

We will need that the a found in the above proof be bounded as R → ∞. We will say that the
positive real functions f and h have the samr order if

lim
R→∞

sup f(R)/h(R) = c > 0

REMARK 1. The usual definition that f and h have the same order is that, for large R,

0 ≤ δ ≤ f(R)/h(R) ≤ ∆,

for fixed δ and ∆ (see Hardy, G. H., (1954), p. 2). This definition implies (but it is stronger than)
our definition.

PROPOSITION 2. Notations being as in Proposition 1, let f(R) =
∫
B(R)

g. Then the number

a found in the proof of Proposition 1 is bounded as R → ∞ if there exists a positive function
h(R) which has the same order as f and, in addition, has the property that for every sequence
Ri, i = 1, · · · , going to infinity,

(1) lim
Ri→∞

h(nRi)

h(mRi)
= γn,m < 1, if n < m.

PROOF The fact that
lim
R→∞

sup f(R)/h(R) = c > 0

implies that for every δ > 0

(2) f(R) ≤ ch(R), c = c(1+δ).
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Furthermore, there exists a sequence Qi of real numbers going to infinity such that

(3) lim
Qi→∞

f(Qi)/h(Qi) = c.

Now, take a sequence {Ri} = {Qi/3} and compute

limRi→∞ a(Ri) ≤ limRi→∞
f(Ri)

f(3Ri)− f(2Ri)

≤ lim
ch(Ri)

f(3Ri)− ch(2Ri)

≤ lim

ch(Ri)

ch(3Ri)

f(3Ri)

ch(3Ri)
−
h(2Ri)

h(3Ri)

=
γ13

c

c
− γ23

=
γ13

1

1 + δ
− γ23

,

where we have used (2), (3) and (1). Since we can choose δ small enough so that the denominator
is strictly positive, a(Ri) is bounded.REMARK 2 There are many functions h(R) that satisfy

lim
Ri

h(nRi)

h(mRi)
< 1, if m < n.

For instance, for every positive α, Rα is such a function and so is eR
α

. Indeed,

lim
(nR)α

(mR)α
=

(
n

m

)α
< 1, if n < m,

lim
enR

α

emRα
= lim

1

e(m−n)Rα
= 0, if n < m.

In fact, one easily checks that ee
R

also satisfies the above condition.
On the other hand, log(R) does not satisfy the condition, since

lim
R→∞

lognR

logmR
= lim

logn

logR
+ 1

logm

logR
+ 1

= 1.

As an application of the above ideas, we will show that the question posed in the beginning of
this note has an affirmative answer provided that f(R) =

∫
B(R)

|φ|1+qdM grows with the same

order as a positive function h(R) that satisfies

lim
h(mR)

h(nR)
< 1, if m < n

(recall that φ = −A+HI). More precisely,

THEOREM. Let Mn, n ≤ 5, be a complete noncompact hypersurface of Rn+1 with constant mean
curvature H. Assume that M is (weakly) stable and that

lim
R→∞

∫
BR
|φ|2dM

R2+2q
= 0, q ≤

2

6n+ 1
.

In addition, assume that for some q, the function

f(R) =

∫
B(R)

|φ|1+qdM
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satisfies the following: There exists a positive function h(R) such that

lim
R→∞

sup f(R)/h(R) = c > 0

and

lim
R→∞

h(mR)

h(nR)
< 1, if m < n.

Then Mn is a hyperplane.
PROOF. Set in Proposition 1, g = |φ|1+q with the q given in the statement of the theorem. Since∫
M
ξa|φ|1+q = 0, the integrand can be used as a test function in the (weak) stability. Proceeding

as in loc. cit. we arrive at ∫
M

ξ
2+2q
a |φ|2+2q ≤ β3

∫
M

|φ|2|∇ξa|2+2q

(which is Eq. (17) of loc. cit. where we changed f to ξa to conform to our present notation).
By using the definition of ξa and setting δ = R/4, we obtain∫

B(R−δ)
|φ|2+2q ≤

∫
B(R−δ)

ξ
2+2q
a |φ|2+2q

≤
∫
M

ξ
2+2q
a |φ|2+2q

≤ β3

∫
B(4R)

|φ|2|∇ξa|2+2q

≤ β3

((
4

R

)2+2q

+

(
8a

R

)2+2q)∫
B(4R)

|φ|2

≤ β3(42+2q + (8a)2+2q)
1

R2+2q

∫
B(4R)

|φ|2.

Now, let R go to infinity. Since a is bounded and limR→∞
1

R2+2q

∫
M
|φ|2 = 0, we see that |φ| ≡ 0,

and since M is complete noncompact, M is a hyperplane.
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