Remarks on the Growth of Functions and the Weak Stability of Hypersurfaces with Constant Mean Curvature

H. ALENCAR and M. DO CARMO

IMPA – Instituto de Matemática Pura e Aplicada
22460-320 Rio de Janeiro, RJ, Brasil

ABSTRACT
We show that a weakly stable complete noncompact hypersurface M^n of \mathbb{R}^{n+1}, $n \leq 5$, with constant mean curvature is a hyperplane provided certain conditions hold.

Key words: Constant mean curvature, stability, growth of functions.

INTRODUCTION
We want to consider the following question. In (Alencar & do Carmo, (1994), Theorem 4) we proved a result on strongly stable hypersurfaces of \mathbb{R}^{n+1} with constant mean curvature H. The question is whether the theorem can be extended for the weakly stable case. We recall that M is weakly stable if for all piecewise smooth functions $f: M \to \mathbb{R}$ with compact support and mean value zero, i.e., $\int_M f dM = 0$, we have

$$\int_M |\nabla f|^2 \geq \int_M |A|^2 f^2 dM.$$

Here $|\nabla f|^2$ is the gradient of f in the induced metric and $|A|^2$ is the square of the norm of the linear map A associated to the second fundamental form.

We start with a proposition that will give a test function for weak stability.

PROPOSITION 1. Let M be a complete noncompact Riemannian manifold, and let $g: M \to \mathbb{R}$, $g \geq 0$
be a C^∞ function. Let $x_0 \in M$ and denote by $\rho(x) = d(x, x_0)$, where d is the geodesic distance in M. Then there exists a function

$$\xi \in C^0(M),$$

ξ piecewise linear, with $\xi(x) \leq 1$ if $\rho(x) \leq R$ (R a fixed number),

$$\xi(x) = 0 \text{ if } \rho(x) \geq 4R,$$

$|\nabla \xi|$ or bounded, and $\int_M g \xi = 0$.

H. Alencar and M. do Carmo were partially supported by the National Council for Scientific and Technological Development – CNPq of Brazil.
Choose \(0 < \delta \leq R/4 \), and \(a > 0 \). Define a family \(\xi_a \) of functions parametrized by \(a \) as follows:

\[
\xi_a(x) = 1, \quad 0 \leq x \leq R - \delta,
\]

\[
\xi_a(x) = \frac{R - x}{\delta}, \quad R - \delta \leq x \leq R,
\]

\[
\xi_a(x) = 0, \quad R \leq x \leq 2R - \delta,
\]

\[
\xi_a(x) = \frac{(2R - \delta)a - ax}{\delta}, \quad 2R - \delta \leq x \leq 2R,
\]

\[
\xi_a(x) = -a, \quad 2R \leq x \leq 3R,
\]

\[
\xi_a(x) = \frac{ax - (3R + \delta)}{\delta}, \quad 3R \leq x \leq 3R + \delta,
\]

\[
\xi_a(x) = 0, \quad 3R + \delta \leq x \leq \infty.
\]

Then

\[
\int_{M} g\xi_a = \int_{B(R)} g\xi_a + \int_{B(2R) - B(2R - \delta)} g\xi_a - a \int_{B(3R) - B(2R)} g + \int_{B(3R + \delta) - B(3R)} g\xi_a.
\]

The first term is positive and the last three terms are negative. Clearly, if \(a \) is small enough, the integral is positive and if \(a \) is large the integral is negative. Thus there exists an \(a \) such that

\[
\int_{M} g\xi_a = 0.
\]

Furthermore, since

\[
0 = \int_{M} g\xi_a \leq \int_{B(R)} g - a \int_{B(3R) - B(2R)} g,
\]

such an \(a \) is bounded by

\[
a \leq \frac{\int_{B(R)} g}{\int_{B(3R) - B(2R)} g}.
\]

We will need that the \(a \) found in the above proof be bounded as \(R \to \infty \). We will say that the positive real functions \(f \) and \(h \) have the same order if

\[
\lim_{R \to \infty} \sup \frac{f(R)}{h(R)} = c > 0
\]

for fixed \(\delta \) and \(\Delta \) (see Hardy, G. H., (1954), p. 2). This definition implies (but it is stronger than) our definition.

Proposition 2. Notations being as in Proposition 1, let \(f(R) = \int_{B(R)} g \). Then the number \(a \) found in the proof of Proposition 1 is bounded as \(R \to \infty \) if there exists a positive function \(h(R) \) which has the same order as \(f \) and, in addition, has the property that for every sequence \(R_i, i = 1, \ldots \), going to infinity,

\[
(1) \quad \lim_{R_i \to \infty} \frac{h(nR_i)}{h(mR_i)} = \gamma_{n,m} < 1, \quad \text{if} \ n < m.
\]

Proof The fact that

\[
\lim_{R \to \infty} \sup f(R)/h(R) = c > 0
\]

implies that for every \(\delta > 0 \)

\[
(2) \quad f(R) \leq \varphi h(R), \quad \varphi = c(1+\delta).
\]
Furthermore, there exists a sequence Q_i of real numbers going to infinity such that

$$\lim_{Q_i \to \infty} f(Q_i)/h(Q_i) = c.$$

Now, take a sequence $\{R_i\} = \{Q_i/3\}$ and compute

$$\lim_{R_i \to \infty} a(R_i) \leq \lim_{R_i \to \infty} \frac{f(R_i)}{f(3R_i) - f(2R_i)} \leq \lim_{R_i \to \infty} \frac{\tau h(R_i)}{\tau h(3R_i) - \tau h(2R_i)} \leq \lim_{R_i \to \infty} \frac{f(3R_i)}{\tau h(3R_i)} \frac{h(2R_i)}{h(3R_i)} = \frac{\gamma_1}{c - \gamma_2} = \frac{\gamma_1}{1 + \delta - \gamma_2},$$

where we have used (2), (3) and (1). Since we can choose δ small enough so that the denominator is strictly positive, $a(R_i)$ is bounded.

Remark 2 There are many functions $h(R)$ that satisfy $\lim_{R \to \infty} h(mR)/h(nR) < 1$, if $m < n$. For instance, for every positive α, R^α is such a function and so is $e^{R\alpha}$. Indeed,

$$\lim_{R \to \infty} \left(\frac{n}{m}\right)^\alpha = \begin{cases} 0, & \text{if } n < m, \\ \infty, & \text{if } n > m. \end{cases}$$

$$\lim_{R \to \infty} \frac{e^{nR\alpha}}{e^{mR\alpha}} = \lim_{R \to \infty} e^{(n-m)R} = 0, \quad \text{if } n < m.$$

In fact, one easily checks that e^R also satisfies the above condition.

On the other hand, $\log(R)$ does not satisfy the condition, since

$$\lim_{R \to \infty} \frac{\log nR}{\log mR} = \lim_{R \to \infty} \frac{\log n}{\log m} + 1 = 1.$$

As an application of the above ideas, we will show that the question posed in the beginning of this note has an affirmative answer provided that $f(R) = \int_{B(R)} |\phi|^{1+q}dM$ grows with the same order as a positive function $h(R)$ that satisfies

$$\lim_{R \to \infty} h(mR)/h(nR) < 1, \quad \text{if } m < n$$

(recall that $\phi = -A + HI$). More precisely,

Theorem. Let M^n, $n \leq 5$, be a complete noncompact hypersurface of \mathbb{R}^{n+1} with constant mean curvature H. Assume that M is (weakly) stable and that

$$\lim_{R \to \infty} \frac{\int_{B(R)} |\phi|^2dM}{R^{2+2q}} = 0, \quad q \leq \frac{2}{6n+1}.$$

In addition, assume that for some q, the function

$$f(R) = \int_{B(R)} |\phi|^{1+q}dM$$
satisfies the following: There exists a positive function \(h(R) \) such that

\[
\lim_{R \to \infty} \sup R / h(R) = \epsilon > 0
\]

and

\[
\lim_{R \to \infty} \frac{h(mR)}{h(nR)} < 1, \quad \text{if m < n}.
\]

Then \(M^n \) is a hyperplane.

Proof. Set in Proposition 1, \(g = |\phi|^{1+q} \) with the \(q \) given in the statement of the theorem. Since \(\int_M \xi_a |\phi|^{1+q} = 0 \), the integrand can be used as a test function in the (weak) stability. Proceeding as in loc. cit. we arrive at

\[
\int_M \xi_a^{2+2q} \phi |\phi|^{2+2q} \leq \beta_3 \int_M |\phi|^2 |\nabla \xi_a|^{2+2q},
\]

(which is Eq. (17) of loc. cit. where we changed \(f \) to \(\xi_a \) to conform to our present notation).

By using the definition of \(\xi_a \) and setting \(\delta = R/4 \), we obtain

\[
\int_{B(R-\delta)} |\phi|^{2+2q} \leq \int_{B(R-\delta)} \xi_a^{2+2q} \phi |\phi|^{2+2q} \\
\leq \int_M \xi_a^{2+2q} \phi |\phi|^{2+2q} \\
\leq \beta_3 \int_{B(4R)} |\phi|^2 |\nabla \xi_a|^{2+2q} \\
\leq \beta_3 \left(\left(\frac{4}{R} \right)^{2+2q} + \left(\frac{8a}{R} \right)^{2+2q} \right) \int_{B(4R)} |\phi|^2 \\
\leq \beta_3 \left(\frac{4^{2+2q} + (8a)^{2+2q}}{R^{2+2q}} \right) \frac{1}{R^{2+2q}} \int_{B(4R)} |\phi|^2.
\]

Now, let \(R \) go to infinity. Since \(a \) is bounded and \(\lim_{R \to \infty} 1 / R^{2+2q} \int_M |\phi|^2 = 0 \), we see that \(|\phi| \equiv 0 \), and since \(M \) is complete noncompact, \(M \) is a hyperplane.

References
