Remarks on the Growth of Functions and the Weak Stability of Hypersurfaces with Constant Mean Curvature

H. ALENCAR and M. DO CARMO

IMPA - Instituto de Matemática Pura e Aplicada 22460-320 Rio de Janeiro, RJ, Brasil

ABSTRACT

We show that a weakly stable complete noncompact hypersurface M^{n} of $\mathbb{R}^{n+1}, n \leq 5$, with constant mean curvature is a hyperplane provided certain conditions hold.

Key words: Constant mean curvature, stability, growth of functions.

INTRODUCTION

We want to consider the following question. In (Alencar \& do Carmo, (1994), Theorem 4) we proved a result on strongly stable hypersurfaces of \mathbb{R}^{n+1} with constant mean curvature H. The question is wether the theorem can be extended for the weakly stable case. We recall that M is weakly stable if for all piecewise smooth functions $f: M \rightarrow R$ with compact support and mean value zero, i.e., $\int_{M} f d M=0$, we have

$$
\int_{M}|\nabla f|^{2} \geq \int_{M}|A|^{2} f^{2} d M
$$

Here $|\nabla f|^{2}$ is the gradient of f in the induced metric and $|A|^{2}$ is the square of the norm of the linear map A associated to the second fundamental form.

We start with a proposition that will give a test function for weak stability.

PROPOSITION 1. Let M be a complete noncompact Riemannian manifold, and let

$$
g: M \rightarrow \mathbb{R}, \quad g \geq 0
$$

be a C^{∞} function. Let $x_{0} \in M$ and denote by $\rho(x)=d\left(x, x_{0}\right)$, where d is the geodesic distance in M. Then there exists a function

$$
\xi \in C_{0}^{0}(M)
$$

ξ piecewise linear, with $\xi(x) \leq 1$ if $\rho(x) \leq R$ (R a fixed number),

$$
\xi(x)=0 \quad \text { if } \quad \rho(x) \geq 4 R,
$$

$|\nabla \xi|$ or bounded, and $\int_{M} g \xi=0$.
H. Alencar and M. do Carmo were partially supported by the National Council for Scientific and Technological Development - CNPq of Brazil.

PROOF. Choose $0<\delta \leq R / 4$, and $a>0$. Define a family ξ_{a} of functions parametrized by a as follows:

$$
\begin{array}{ll}
\xi_{a}(x)=1, & 0 \leq x \leq R-\delta, \\
\xi_{a}(x)=\frac{R-x}{\delta}, & R-\delta \leq x \leq R, \\
\xi_{a}(x)=0, & R \leq x \leq 2 R-\delta, \\
\xi_{a}(x)=\frac{(2 R-\delta) a-a x}{\delta}, & 2 R-\delta \leq x \leq 2 R, \\
\xi_{a}(x)=-a, & 2 R \leq x \leq 3 R, \\
\xi_{a}(x)=\frac{a x-(3 R+\delta)}{\delta}, & 3 R \leq x \leq 3 R+\delta, \\
\xi_{a}(x)=0, & 3 R+\delta \leq x \leq \infty
\end{array}
$$

Then

$$
\int_{M} g \xi_{a}=\int_{B(R)} g \xi_{a}+\int_{B(2 R)-B(2 R-\delta)} g \xi_{a}-a \int_{B(3 R)-B(2 R)} g+\int_{B(3 R+\delta)-B(3 R)} g \xi_{a} .
$$

The first term is positive and the last three terms are negative. Clearly, if a is small enough, the integral is positive and if a is large the integral is negative. Thus there exists an a such that $\int_{M} g \xi_{a}=0$. Furthermore, since

$$
0=\int_{M} g \xi_{a} \leq \int_{B(R)} g-a \int_{B(3 R)-B(2 R)} g,
$$

such an a is bounded by

$$
a \leq \int_{B(R)} g / \int_{B(3 R)-B(2 R)} g
$$

We will need that the a found in the above proof be bounded as $R \rightarrow \infty$. We will say that the positive real functions f and h have the samr order if

$$
\lim _{R \rightarrow \infty} \sup f(R) / h(R)=c>0
$$

REMARK 1. The usual definition that f and h have the same order is that, for large R,

$$
0 \leq \delta \leq f(R) / h(R) \leq \Delta
$$

for fixed δ and Δ (see Hardy, G. H., (1954), p. 2). This definition implies (but it is stronger than) our definition.
PROPOSITION 2. Notations being as in Proposition 1, let $f(R)=\int_{B(R)} g$. Then the number a found in the proof of Proposition 1 is bounded as $R \rightarrow \infty$ if there exists a positive function $h(R)$ which has the same order as f and, in addition, has the property that for every sequence $R_{i}, i=1, \cdots$, going to infinity,

$$
\begin{equation*}
\lim _{R_{i} \rightarrow \infty} \frac{h\left(n R_{i}\right)}{h\left(m R_{i}\right)}=\gamma_{n, m}<1, \quad \text { if } n<m \tag{1}
\end{equation*}
$$

Proof The fact that
implies that for every $\delta>0$
(2)

$$
\lim _{R \rightarrow \infty} \sup f(R) / h(R)=c>0
$$

$$
f(R) \leq \bar{c} h(R), \quad \bar{c}=c(1+\delta)
$$

Furthermore, there exists a sequence Q_{i} of real numbers going to infinity such that

$$
\begin{equation*}
\lim _{Q_{i} \rightarrow \infty} f\left(Q_{i}\right) / h\left(Q_{i}\right)=c \tag{3}
\end{equation*}
$$

Now, take a sequence $\left\{R_{i}\right\}=\left\{Q_{i} / 3\right\}$ and compute

$$
\begin{aligned}
\lim _{R_{i} \rightarrow \infty} a\left(R_{i}\right) & \leq \lim _{R_{i} \rightarrow \infty} \frac{f\left(R_{i}\right)}{f\left(3 R_{i}\right)-f\left(2 R_{i}\right)} \\
& \leq \lim \frac{\bar{c} h\left(R_{i}\right)}{f\left(3 R_{i}\right)-\bar{c} h\left(2 R_{i}\right)} \\
& \leq \lim \frac{\frac{\bar{c} h\left(R_{i}\right)}{\bar{c} h\left(3 R_{i}\right)}}{\frac{f\left(3 R_{i}\right)}{\bar{c} h\left(3 R_{i}\right)}-\frac{h\left(2 R_{i}\right)}{h\left(3 R_{i}\right)}} \\
& =\frac{\gamma_{13}}{\frac{c}{c}-\gamma_{23}}=\frac{\gamma_{13}}{\frac{1}{1+\delta}-\gamma_{23}}
\end{aligned}
$$

where we have used (2), (3) and (1). Since we can choose δ small enough so that the denominator is strictly positive, $a\left(R_{i}\right)$ is boundBむMARK 2 There are many functions $h(R)$ that satisfy

$$
\lim _{R_{i}} \frac{h\left(n R_{i}\right)}{h\left(m R_{i}\right)}<1, \quad \text { if } \quad m<n
$$

For instance, for every positive α, R^{α} is such a function and so is $e^{R^{\alpha}}$. Indeed,

$$
\begin{array}{ll}
\lim \frac{(n R)^{\alpha}}{(m R)^{\alpha}}=\left(\frac{n}{m}\right)^{\alpha}<1, & \text { if } \quad n<m \\
\lim \frac{e^{n R^{\alpha}}}{e^{m R^{\alpha}}}=\lim \frac{1}{e^{(m-n) R^{\alpha}}}=0, \quad \text { if } \quad n<m
\end{array}
$$

In fact, one easily checks that $e^{e^{R}}$ also satisfies the above condition.
On the other hand, $\log (R)$ does not satisfy the condition, since

$$
\lim _{R \rightarrow \infty} \frac{\log n R}{\log m R}=\lim \frac{\frac{\log n}{\log R}+1}{\frac{\log m}{\log R}+1}=1
$$

As an application of the above ideas, we will show that the question posed in the beginning of this note has an affirmative answer provided that $f(R)=\int_{B(R)}|\phi|^{1+q} d M$ grows with the same order as a positive function $h(R)$ that satisfies

$$
\lim \frac{h(m R)}{h(n R)}<1, \quad \text { if } m<n
$$

(recall that $\phi=-A+H I$). More precisely,
THEOREM. Let M^{n}, $n \leq 5$, be a complete noncompact hypersurface of \mathbb{R}^{n+1} with constant mean curvature H. Assume that M is (weakly) stable and that

$$
\lim _{R \rightarrow \infty} \frac{\int_{B_{R}}|\phi|^{2} d M}{R^{2+2 q}}=0, \quad q \leq \frac{2}{6 n+1}
$$

In addition, assume that for some q, the function

$$
f(R)=\int_{B(R)}|\phi|^{1+q} d M
$$

satisfies the following: There exists a positive function $h(R)$ such that

$$
\lim _{R \rightarrow \infty} \sup f(R) / h(R)=c>0
$$

and

$$
\lim _{R \rightarrow \infty} \frac{h(m R)}{h(n R)}<1, \quad \text { if } m<n
$$

Then M^{n} is a hyperplane.
PROOF. Set in Proposition $1, g=|\phi|^{1+q}$ with the q given in the statement of the theorem. Since $\int_{M} \xi_{a}|\phi|^{1+q}=0$, the integrand can be used as a test function in the (weak) stability. Proceeding as in loc. cit. we arrive at

$$
\int_{M} \xi_{a}^{2+2 q}|\phi|^{2+2 q} \leq \beta_{3} \int_{M}|\phi|^{2}\left|\nabla \xi_{a}\right|^{2+2 q}
$$

(which is Eq. (17) of loc. cit. where we changed f to ξ_{a} to conform to our present notation)
By using the definition of ξ_{a} and setting $\delta=R / 4$, we obtain

$$
\begin{aligned}
\int_{B(R-\delta)}|\phi|^{2+2 q} & \leq \int_{B(R-\delta)} \xi_{a}^{2+2 q}|\phi|^{2+2 q} \\
& \leq \int_{M} \xi_{a}^{2+2 q}|\phi|^{2+2 q} \\
& \leq \beta_{3} \int_{B(4 R)}|\phi|^{2}\left|\nabla \xi_{a}\right|^{2+2 q} \\
& \leq \beta_{3}\left(\left(\frac{4}{R}\right)^{2+2 q}+\left(\frac{8 a}{R}\right)^{2+2 q}\right) \int_{B(4 R)}|\phi|^{2} \\
& \leq \beta_{3}\left(4^{2+2 q}+(8 a)^{2+2 q}\right) \frac{1}{R^{2+2 q}} \int_{B(4 R)}|\phi|^{2} .
\end{aligned}
$$

Now, let R go to infinity. Since a is bounded and $\lim _{R \rightarrow \infty} \frac{1}{R^{2}+2 q} \int_{M}|\phi|^{2}=0$, we see that $|\phi| \equiv 0$, and since M is complete noncompact, M is a hyperplane.

References

ALENCAR, H. \& DO CARMO, M., (1994) Hypersurfaces with constant mean curvature in space forms. An. Acad. Bras. Ci., 66 (3): 265-274.

HARDY, G. H., (1954), Orders of Infinity, Cambridge University Press

