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ABSTRACT

It has been found recently that a number of results on minimal submanifolds that involve the second fundamental form can

be naturally extended to the case of constant mean curvature if one replaces the second fundamental form by a related tensor.

This paper describes some of these results and raises further questions.
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1. Surfaces with constant mean curvature behave in some questions in a manner strikingly different from minimal surfaces. For

instance, the Gauss map of a complete minimal surface in R3 fill the whole sphere except for four points, whereas the Gauss

map of the complete circular cylinder is merely a circle in the sphere, that is, it is as thin as it can be. Also, the Morse index

of a complete minimal surface M in R3 is finite if and if the total curvature of M is finite, whereas all complete noncompact

surfaces with nonzero constant mean curvature have infinite index.

On the other hand, in some other questions they behave in such a similar way that theorems on minimal surfaces have

natural extensions to surfaces with nonzero constant mean curvature. They both satisfy elliptic partial differential equations

which are the Euler equations of similar variational problem, and their Plateau’s problems follow patterns reasonably alike.

Actually, the first investigators in the theory of surfaces of constant mean curvature explored quite well these similarities and

only recently it became clear that the differences are an important part of the whole picture.

In this paper, we want to mention some recent results in the theory of hypersurfaces with constant mean curvature in space

forms that are natural extensions of theorems for minimal submanifolds.

2. We will begin with a well known result for minimal submanifolds. First, let us fix some notation. Let f : Mn →M
n+p

be an

immersion of an n-manifold Mn into a Riemannian (n+ p)-manifold M
n+p

. Fix p ∈ M and choose a local orthonormal frame

of normal fields en+1, ... , ep+n around p. For each α, α = n+ 1, ... , p+ n, define a linear map Aα : TpM → TpM by

〈AαX, Y 〉 = 〈∇XY, eα〉,

where X, Y are tangent vector fields and ∇ is the Riemannian connection on M . The map Aα can be diagonalized, i.e., for

each α, there exists a tangent basis {eα1 , ... , eαn} such that Aαe
α
i = kαi e

α
i ,

——————–

*An extension of an invited address presented by the second author at the Workshop on Minimal Surfaces held at Granada, Spain, on

September of 1991.
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i = 1, ... , n. We then define the mean curvature normal vector:

H =
∑
α

(
1

n

∑
i

kαi

)
eα,

and the square of the normal of the second fundamental form:

|A|2 =
∑
iα

(kαi )2 .

It is known that, up to orientations, the above objects do not depend on the choices made.

Let us now specialize to the case where Mn is compact, M
n+p

is the sphere Sn+p(c) ⊂ Rn+p+1 with curvature c > 0 in the

euclidean space Rn+p+1, and f is a minimal immersion (H ≡ 0).

THEOREM A. (Simons, 1968, Chern-do-Carmo-Kobayashi, 1970, Lawson, 1969). Assume that |A|2 ≤ nc
(

2− 1
p

)−1

. Then:

(i) Either |A|2 ≡ 0 (and Mn is totally geodesic in Sn+p(c)) or |A|2 ≡ nc
(

2− 1
p

)−1

.

(ii) |A|2 ≡ nc
(

2− 1
p

)−1

if and only if:

a) p = 1, and Mn is locally a Clifford torus, i.e., a product of spheres of appropriate radii, in Sn+1(c).

b) p = 2, and Mn = M2 is locally a Veronese surface in S4(c).

We want to extend the above theorem to the case of constant mean curvature. For that, it is convenient to modify slightly

the second fundamental form and to introduce a new linear map φα : TpM → TpM by

〈φαX, Y 〉 = −〈AαX, Y 〉+ 〈H, eα〉〈X, Y 〉.

We define a tensor φ : TpM → TpM
⊥ by φ(X ,Y ) =

∑
α〈φαX, Y 〉eα. The map φα can also be diagonalized:

φα(eαi ) = µαi eα.

It can be readily checked that trace φα = 0, and that

|φ|2 def
=
∑
iα

(µαi )2 =
1

2n

∑
ijα

(kαi − kαj )2.

Notice that while |A|2 measures how far is Mn ⊂ M
n+p

from being totally geodesic, |φ|2 measures how far it is from being

totally umbilic.

It turns out that φ is precisely what is needed to extend the above theorem to constant mean curvature.

Consider first the case of codimension p = 1 and let us restrict ourselves, for convenience, to the unit sphere Sn+1(1). Thus

Mn is compact and f : Mn → Sn+1 is a hypersurface with constant mean curvature H. Without loss of generality, we can

assume that H ≥ 0. For each H, set

PH(x) = x2 +
n(n− 2)√
n(n− 1)

Hx− n(H2 + 1),

and let BH be the square of the positive root of PH(x) = 0. Notice that B0 = n.

Before the statement of the next theorem, we need a definition. An H(r)-torus in Sn+1(1) is obtained by taking the product

immersion Sn−1
r × S1√

1−r2
⊂ Rn × R2, where, for instance, Sn−1

r is a sphere of radius r in Rn. It is easily checked that an

H(r)-torus is actually contained in Sn+1(1) and has constant mean curvature.
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THEOREM 1. (Alencar & do Carmo, 1994). Assume that |φ|2 ≤ BH . Then:

(i) Either |φ|2 ≡ 0 (and M is totally umbilic) or |φ|2 ≡ BH .

(ii) |φ|2 ≡ BH if and only if:

a) H = 0 and Mn is locally a Clifford torus.

b) H 6= 0, n ≥ 3, and Mn is locally an H(r)-torus with r2 < n−1
n

.

c) H 6= 0, n = 2, and Mn is locally an H(r)-torus, for any r 6= n−1
n

, 0 < r < 1.

REMARK 1. A curious fact is that not all H(r)-tori appear in the equality case (b), but only those for which r2 < n−1
n

. It can

be easily checked that those H(r)-tori for which r2 > n−1
n

have |φ|2 > BH . We will come back to this later.

REMARK 2. An upper bound for |φ|2 which implies that below this bound Mn is totally umbilic has been obtained by (Okumura,

1974). However, the bound obtained there is not sharp.

We now consider the case of codimension p > 1. In this situation, the natural definition of constant mean curvature is

that the mean curvature vector H is parallel in the normal connection. It is curious that, apparently, there is no variational

interpretation of this condition for p > 1. At any rate, the problem of extending Theorem 1 to this situation makes sense and

was solved by Walcy Santos in her Doctor’s thesis at IMPA. The results are as follows.

Let W be compact and let f : Mn → Sn+p(1) be an immersion with parallel mean curvature vector H. When H ≡ 0, we

assume that there exists a normal parallel direction. Set φH = 〈φ, H〉.

We will denote by Snr an n-sphere of radius r and by Sn(k) an n-sphere of curvature k. For simplicity, we will write

Sn(k) ↪→u S
n+1(1) to mean that Sn(k) is an umbilic hypersurface of Sn+1(1).

THEOREM 2. (Santos, 1992). Assume that p > 1 and that

(1) |φ|2 ≤
(
p− 1

2p− 3

) (
− n(n− 2)√

n(n− 1)
|φH |+ n(H2 + 1)

)
.

Then:

(i) |φ| = const., and either |φ|2 = 0 or equality holds in (1).

(ii) Equality holds in (1) if and only if one of the following cases occur:

a) M is a minimal Clifford torus

Smr1 × Sn−mr2 ⊂ Sn+1(1 +H2) ↪→u S
n+2(1),

where

r1 =

(
m

n(1 +H2)

)1/2

, r2 =

(
n+m

n(1 +H2)

)1/2

,

or M = M2 is a Veronese surface

M2 ⊂ S4(1 +H2) ↪→u S
5(1).

b) For all H0, 0 ≤ H0 < H, M is an H1(r)-torus

Sn−1
r x S1

r1 ⊂ S
n+1(1 +H2

0 ) ↪→u S
n+2(1),

where

H2
1 +H2

0 = H2, r2 + r21 = (1 +H2
0 )−1.
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If n ≥ 3, we have only those H1(r)-tori with r2 < n−1
n

(1+H2
0 )−1; if n = 2, the only condition is r2 6= 1

2
(1+H2

0 )−1.

A further question raised by Theorem 1 can be described as follows. Let us restrict ourselves to p = 1, although the problems

makes sense for any p. Consider the set of compact hypersurfaces Mn of Sn+1(1) with constant mean curvature H and with

|φ|2 = const. The question asks whether the set of values of |φ|2 in this situation is discrete.

For H ≡ 0, this question was posed in (Chern, do Carmo & Kobayashi, 1970) about 20 years ago and, even in this simpler

case, little progress has been made. The most important contribution is due to (Peng & Terng, 1983) who proved that if n = 3,

H ≡ 0, |A|2 = const., and 3 < |A|2 ≤ 6, then |A|2 ≡ 6; in this latter case, M3 is an isoparametric hypersurface of S4(1) with

three distinct principal curvatures.

Let us recall that a hypersurface of a space form is called isoparametric if all principal curvatures are constant. In the case

of hypersurfaces M3 ⊂ S4(1), they are well known and are: umbilic (k1 = k2 = k3), H-tori (k1 = k2 6= k3) or the so-called

Cartan hypersurfaces (k1, k2 and k3 distinct). The principal curvatures can be explicitly computed, and in each of the above

three families there is one minimal hypersurface.

For H 6= 0, there is the recent result of Almeida & Brito who generalized the result of Peng & Terng to constant mean

curvature.

THEOREM 3. (Almeida & Brito, 1990). Let M3 be a compact and let f : M3 → S4(1) be an immersion with constant mean

curvature H. Assume that |φ|2 = const. and that |φ|2 ≤ 6 + 6H2. Then M3 is an isoparametric hypersurface of S4(1).

Furthermore, if 4 + 6H2 ≤ |φ|2 ≤ 6 + 6H2 then |φ|2 = 6 + 6H2 and M3 is a Cartan hypersurface.

The result of Almeida & Brito solves the above question for n = 3 and |φ|2 ≤ 6 + 6H2. It also throws some light on

what happens to some H(r)-tori that are missing in Theorem 1, namely, those for which r2 > 2
3
: they all lie in the interval

BH < |φ|2 < 4 + 6H2.

An approximate graphic representation of all these results appear in Fig. 1.*

3. We now pass to another question where the map φ appears naturally; this time the ambient space is the euclidean space

Rn+1.

Let Mn be a complete noncompact hypersurface of Rn+1. Let p ∈M and denote by BR(p) = BR the geodesic ball of center

p and radius R in the induced metric. If M is minimal, we say that M is stable if for all piecewise smooth functions f : M → R

with compact support, we have that

(1)

∫
M

|∇f |2dM ≥
∫
M

|A|2f2dM ;

here ∇f is the gradient of f in the induced metric and |A|2 is the square of the norm of the second fundamental form. The

following is a kind of Bernstein theorem, where we have replaced graphs by stable and added a growth condition on |A|2.

THEOREM B. (do Carmo & Peng, 1982). Let Mn be a minimal complete noncompact hypersurface of Rn+1. Assume that M is

stable and that

lim
R→∞

∫
BR
|A|2dM
R2+2q

= 0, q <

√
2

n
.

*After this paper was written, a paper by (Chang, 1993) showed that the area in Fig. 1 labeled with unknown is actually void.
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Then Mn is a hyperplane of Rn+1.

To extend the above theorem to hypersurfaces with constant mean curvature H, we replace A by φ and take into consideration

the fact that stability for constant mean curvature means either condition (1) (strong stability) or that condition (1) holds only

for those compactly supported f that satisfy
∫
M
fdM = 0 (weak stability). This causes some additional complications in the

proof of the desired extension. At any rate, the following theorem can be proved.

Fig. 1

THEOREM 4. Let Mn, n ≤ 5, be a complete noncompact hypersurface of Rn+1 with constant mean curvature H. Assume that

M is strongly stable and that

lim
R→∞

∫
BR
|φ|2dM

R2+2q
= 0, q ≤ 2

6n+ 1
.

Then Mn is a hyperplane of Rn+1.

PROOF. We first need a version of Simmon’s inequality for the tensor φ rather than the tensor A.

Let {e1, . . . , en} be a local orthonormal frame on M that diagonalizes φ at each point, i.e., φei = µiei. Then (cf. Alencar,

do Carmo, 1994).

(2)
1

2
∆|φ|2 =

∑
ijk

φ2
ijk +

∑
i

µi(trφ)ii +
1

2

∑
ij

Rijij(µi − µj)2.
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Here ∆ is the Laplacian in the induced metric of M , φijk are the components of the covariant derivative of the tensor φ, and

Rijij is the sectional curvature of the plane {ei, ej}. Since µi = H−ki, where ki are the principal curvatures of the hypersurface,

we obtain that trφ =
∑
µi = 0. By Gauss’ formula, we conclude that the last term in (2) is given by

(3)

1
2

∑
ij Rijij(µi − µj)

2 = 1
2

∑
ij µiµj(µi − µj)

2

−H
2

∑
ij(µi + µj)(µi − µj)2 + H2

2

∑
ij(µi − µj)

2.

Now, since
∑
µi = 0, it is easily checked that

(4)
∑
ij

(µi − µj)2 = 2n|φ|2,

(5)
∑
ij

(µi + µj)(µi − µj)2 = 2n
∑
i

µ3
i ,

(6)
∑
ij

µiµj(µi − µj)2 =

(∑
i

µ2
i

)2

= −2|φ|4.

From (2)-(6), it follows that

(7)
1

2
∆|φ|2 = |φ|∆|φ|+ |∇|φ‖2 =

∑
ijk

φ2
ijk − |φ|4 − nH

∑
i

µ3
i + nH2|φ|2.

Again, since
∑
i µi = 0, it follows by an argument in (do Carmo-Peng, 1982 cf. Eqs.(2.3) and (2.4)) that

(8)
∑
ijk

φ2
ijk ≥

2

n
|∇|φ‖2 + |∇|φ‖2.

Furthermore, by using a lemma of Okumura (for a proof, see Alencar, do Carmo, 1991, Lemma 2.6), we have

(9)
∑
i

µ3
i ≤

n− 2√
n(n− 1)

|φ|3.

Finally, by putting together (7), (8) and (9), we obtain the following version of Simmons’ inequality

(10) |φ‖∇|φ‖+ |φ|4 +
n(n− 2)√
n(n− 1)

H|φ|3 − nH2|φ|2 ≥ 2

n
|∇|φ‖2.

Now, introduce f |φ|1+q in the stability inequality (1). We obtain noticing that |A|2 = |φ|2 + nH2,

(11)

∫
M

(|φ|4+2q + nH2|φ|2+2q)f2

≤ (1 + q)2
∫
M

|φ|2q|∇|φ‖2f2 + 2(1 + q)

∫
M

|φ|2q+1f(∇f · ∇|φ|)

+

∫
M

|φ|2q+2|∇f |2.

Inequalities (10) and (11) will be the geometric informations that we need to prove Theorem (4).

The proof now follows essentially the pattern of (do Carmo, Peng, 1982) taking into account the presence of terms that

contain H. We only stress those points which may lead to some differences.
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Multiplying (10) by |φ|2qf2 and integrating over M , we obtain

2

n

∫
M

|φ|2qf2|∇|φ‖2 ≤
∫
M

|φ|2q+1f2∆|φ|+
∫
M

|φ|4+2qf2

+
n(n− 2)√
n(n− 1)

H

∫
M

|φ|2q+3f2 − nH2

∫
M

|φ|2+2qf2.

Since ∫
M

|φ|2q+1f2∆|φ| = −
∫
M

∇(|φ|2q+1f2) · ∇|φ|

= −(2q + 1)

∫
M

|φ|2qf2|∇|φ‖2 − 2

∫
M

|φ|2q+1f(∇|φ| · ∇f),

we have, by using the above inequality and multiplying it by (1 + q),

(12)

(1 + q)

(
2

n
+ 2q + 1

)∫
M

|φ|2qf2|∇|φ‖2

≤ (1 + q)

∫
M

|φ|4+2qf2 − 2(1 + q)

∫
M

|φ|2q+1f(∇f · ∇|φ|)

+
n(n− 2)√
n(n− 1)

(1 + q)H

∫
M

|φ|2q+3f2 − nH2(1 + q)

∫
M

|φ|2+2qf2.

Now, sum up (12) and (11) to obtain, after simplification,

(13)

(1 + q)

(
2

n
+ q

)∫
M

|φ|2qf2|∇|φ‖2

≤ q
∫
M

|φ|4+2qf2 +

∫
M

|φ|2+2q|∇f |2

+(1 + q)
n(n− 2)√
n(n− 1)

H

∫
M

|φ|3+2qf2 − (2 + q)nH2

∫
M

|φ|2+2qf2.

By using in the middle term of the right hand side of (11) the fact that

2ab ≤ εa2 +
1

ε
b2, for all ε > 0,

with a = |f∇|φ‖, b = |φ‖∇f |, we obtain that the stability inequality can be written as

(14)

∫
M

(|φ|4+2q + nH2|φ|2+2q)f2

≤ (1 + q)(1 + q + ε)

∫
M

|φ|2q|∇|φ‖2f2 +

(
1 +

1 + q

ε

)∫
M

|φ|2+2q|∇f |2.

By introducing (13) into (14), simplifying, and collecting terms, we obtain finally

(15)

∫
M

f2|φ|2+2q{A|φ|2 −B|φ|+ C} ≤ D
∫
M

|φ|2q+2|∇f |2,
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where

A = 1− (1 + q + ε)

(
2

n
+ q

)−1

q,

B = (1 + q + ε)

(
2

n
+ q

)−1

(1 + q)
n(n− 2)√
n(n− 1)

H,

C =

(
1 + (1 + q + ε)

(
2

n
+ q

)−1

(2 + q)

)
nH2

D = (1 + q + ε)

(
2

n
+ q

)−1

+ 1 +
1 + q

ε
.

By using Young’s inequality in (15) in the same way as it was used in (do Carmo, Peng, 1982, Eq. (2.11)), we obtain

(16)

∫
M

f2|φ|2+2q{A|φ|2 −B|φ|+ C} ≤ δ
∫
M

f2|φ|4+2q + β1

∫
M

|φ|2|∇f |2(1+q)

f2q
,

where β1 > 0 is a constant (depending on n, ε and q) and δ > 0 can be made arbitrarily small.

Now we have to proceed somewhat differently from (do Carmo, Peng, 1982). Set ε = 2
6n+1

. By using the fact that q ≤ 2
6n+1

,

we can easily show that A > 0. If, in addition, n ≤ 5, we claim that B2 − 4AC < 0.

To see that, we first show by a long but straightforward computation that

∆n = B2 − 4AC

=
nH2

(n− 1)(2 + nq)2
{n4q4 + 2n4(ε+ 2n4(ε+ 2)q3 + n2(n2ε2 + 6n2ε+ 6n2 − 16n+ 16)q2

+ 2n[n3ε2 + (3n2 − 8n+ 8)nε+ 2(n3 − 4n2 − 4n+ 8)]q

+ [n2(n− 2)2ε2 + 2n(n3 − 4n2 − 4n+ 8)ε+ n4 − 4n3 − 12n2 + 16]}.

We first observe that

n4 − 4n3 − 12n2 + 16

is negative for 2 ≤ n ≤ 5 and positive for n ≥ 6. Further n3 − 4n2 + 8 is positive for n ≤ 6. Thus if n ≥ 6 and q is sufficiently

small, the above polynomial in q is positive. It follows that it suffices to check that ∆n < 0, for n = 2, 3, 4, 5. This can easily

be done numerically and completes the proof of our claim.

Now set A = A− δ and choose δ small enough so that we still have B2 − 4AC < 0 and A > 0. It follows from (16) that

(17)

∫
M

f2|φ|2+2q ≤ β2
∫
M

|φ|2|∇f |2(1+q)

f2q
.

By changing f into f1+q in (17), we obtain our final estimate∫
M

f2+2q|φ|2+2q ≤ β3
∫
M

|φ|2|∇f |2+2q,

The proof now follows exactly as in (do Carmo Peng, 1982).

REMARK. The stronger result that Theorem 4 holds for weakly stable hypersurfaces is probably true. We can prove it with

the additional assumption that T (R) =
∫
BR

φdM has polynomial growth, i.e., there exist positive numbers c and α such that

T (R) ≤ cRα. We will come back to that in a future paper.

4. We will describe still another question in which the tensor φ appears in a natural way, this time in the hyperbolic space.

The results here are incomplete and we hope that this may be looked upon as an interesting question.
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Let M2 be a (two-dimensional) surface immersed in the hyperbolic space H3(−1) of constant sectional curvature −1, and

assume that it has constant mean curvature H. Assume furthermore that M is complete and consider the Morse Index Ind(M)

of M . Then the following results are known:

1) If H2 > 1 (i.e., in the “euclidean range”) then

Ind(M) <∞↔M compact.

2) If H2 = 1, then

Ind(M) <∞↔
∫
M

|φ|2 <∞.

(1) is a result of (A. Silveira, 1987). (2) generalizes the well known result of (Fischer-Colbrie, 1985) and can be found in

(do Carmo & Silveira, 1990). It can be shown, by examples, that if H2 < 1, Ind(M) <∞ does not imply that
∫
M
|φ|2dM <∞

(actually there are examples of stable surfaces with constant H in H3(−1), H2 < 1, that have
∫
M
|φ|2dM = ∞, (see Silveira,

1987 p. 635). The question is whether the converse holds, i.e., assuming H2 < 1, does
∫
M
|φ|2dM <∞ implies that Ind M <∞?

For H = 0, the above has been proved to be true by Geraldo de Oliveira in his Paris thesis (Oliveira, 1990). If the general

case turns out to be true, it will give a nice picture for the behaviour of the Morse Index of surfaces in hyperbolic 3-space.*

Let me conclude with a related question. We know of no example of a complete noncompact surface with constant mean

curvature H 6= 0 in R3 with
∫
M
|φ|2dM <∞. Are there such examples, or is it true that, in this case,

∫
M
|φ|2dM <∞ implies

that M is compact?
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