GENERALIZATION OF THE H_p-THEOREM IN A SPACE OF CONSTANT CURVATURE

Hilário Alencar Antonio Gervasio Colares

Let $x: M^n \to R^{n+1}$ be an isometric immersion of an oriented Riemannian manifold M^n with unit normal vector ν, mean curvature H and support function $p = -\langle x, \nu \rangle$. The H_p-Theorem says that if M^n is compact and

$$H_p = 1,$$

then $x(M^n)$ is a round sphere ([3]).

Here we announce two generalizations of the H_p-Theorem. The proofs will appear elsewhere.

Denote by Q^{n+1}_c an n-dimensional simply connected space of constant curvature c. If $p_0 \in Q^{n+1}_c$ we denote $r(\cdot) = d(\cdot, p_0)$ the distance function relative to p_0 and we write $\text{grad} r$ for the gradient of r in Q^{n+1}_c. Let $x: M^n \to R^{n+1}$ be an isometric immersion of a Riemannian manifold M^n oriented by a unit vector ν. We call $X = S_c \text{grad} r$ the position vector of the immersion with respect to p_0, where $S_c(r) = r, \frac{\sin(r\sqrt{c})}{\sqrt{c}}$ or $\frac{\sinh(r\sqrt{-c})}{\sqrt{-c}}$, according $c = 0, c > 0$ or $c < 0$. The function $p = -\langle X, \nu \rangle$ will be called the support function of the immersion. We denote $\theta_c = \frac{d}{dr} S_c(r)$.

Theorem 1. ([1]) Let $x: M^n \to Q^{n+1}_c$ be an isometric immersion of a compact oriented Riemannian manifold M^n with mean curvature H and support function p. Then

$$H_p - \theta_c$$

does not change sign if and only if $x(M^n)$ is a geodesic sphere.

A proof of this theorem is obtained from the following

Hilário Alencar and Antonio Gervasio Colares were partially supported by the National Council for Scientific and Technological Development – CNPq of Brazil.
Lemma. In the conditions of Theorem 1, if Δ is the Laplacian of M^n, then
\[
\frac{1}{2} \Delta \langle X, X \rangle = -c R^2 - n\theta_c (H_p - \theta_c).
\]

Theorem 2. Let $x: M^n \to S^{n+1}(c)$ be an isometric immersion of a compact oriented Riemannian manifold M^n into the $(n+1)$-sphere of radius $\frac{1}{\sqrt{c}}$, with unit normal vector ν, mean curvature $H > 0$ and support function p. If
\[
H = p,
\]
then $x(M^n)$ is a geodesic sphere.

This theorem has been proved by G. Huisken ([2]) when the ambient space is the Euclidean space R^{n+1}.

References

Hilário Alencar
Departamento de Matemática
Univ. Federal de Alagoas
57000 Maceió, Alagoas

Antonio Gervasio Colares
Departamento de Matemática
Univ. Federal do Ceará
6000 Fortaleza, Ceará