Hypersurfaces with null higher order mean curvature

Hilário Alencar* and Márcio Batista

Abstract

A hypersurface M^{n} immersed in a space form is r-minimal if its $(r+1)^{\text {th }}$ curvature (the $(r+1)^{\text {th }}$ elementary symmetric function of its principal curvatures) vanishes identically. Let W be the set of points which are omitted by the totally geodesic hypersurfaces tangent to M. We will prove that if an orientable hypersurface M^{n} is r-minimal and its $r^{t h}$-curvature is nonzero everywhere, and the set W is nonempty and open, then M^{n} has relative nullity $n-r$. Also we will prove that if an orientable hypersurface M^{n} is r-minimal and its $r^{t h}$-curvature is nonzero everywhere, and the ambient space is euclidean or hyperbolic and W is nonempty, then M^{n} is r-stable.

Keywords: r-minimal, r-stable, relative nullity.
Mathematical subject classification: 53A10, 53C42.

1 Introduction

Let \mathbb{Q}_{c}^{n+1} be a $(n+1)$-dimensional, simply-connected, complete Riemannian manifold with constant sectional curvature c. Let M^{n} be a n-dimensional connected manifold, and $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric immersion. For every point $p \in M^{n}$, let $\left(\mathbb{Q}_{c}^{n}\right)_{p}$ be the totally geodesic hypersurface of \mathbb{Q}_{c}^{n+1} tangent to $x\left(M^{n}\right)$ at $x(p)$.

We will denote by

$$
W=\mathbb{Q}_{c}^{n+1}-\bigcup_{p \in M}\left(\mathbb{Q}_{c}^{n}\right)_{p},
$$

the set of points which are omitted by the totally geodesic hypersurfaces tangent to $x\left(M^{n}\right)$. We will work with an immersion whose set W is nonempty. In this direction, T. Hasanis and D. Koutroufiots, see [11], proved that

[^0]Theorem A. Let $x: M^{2} \rightarrow \mathbb{Q}_{c}^{3}$ be a complete minimal immersion with $c \geq 0$. If W is nonempty, then x is totally geodesic.

The proof is heavily based on the techniques of two dimensional manifolds. Now, let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric immersion. In [4], H. Alencar and K. Frensel extended the result above assuming an extra condition. In fact, they proved that

Theorem B. Let M^{n} be a complete Riemannian manifold and $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric minimal immersion. If W is open and nonempty, then x is totally geodesic.

On the other hand, H. Alencar, in [1], provides examples of non-totally geodesic minimal hypersurfaces in $\mathbb{R}^{2 n}, n \geq 4$, with nonempty W, see the Example 3.2. These examples show that, in higher dimensions, it is necessary to add an extra hypothesis. In Theorem B, the extra condition is W open.

The aim of this work is to extend Theorem B for other immersions. In order to do that, we will introduce some definitions.

Let M^{n} be an oriented Riemannian manifold and $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric immersion. Considering the symmetric functions S_{r} of the principal curvatures k_{1}, \ldots, k_{n} :

$$
S_{r}=\sum_{i_{1}<\cdots<i_{r}} k_{i_{1}} \cdots k_{i_{r}}(1 \leq r \leq n)
$$

the r-mean curvature H_{r} of x is defined by $\binom{n}{r} H_{r}=S_{r}$.
It is convenient to introduce the Newton transformations defined inductively by

$$
T_{0}=I, T_{r}=S_{r} I-A T_{r-1}
$$

Here I is the identity matrix and A is the shape operator associated to x.
We say that $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ is r-minimal if $H_{r+1}=0$, i.e., x is a critical point of the variational problem of minimizing the integral

$$
\mathbb{A}_{r}(x)=\int_{D} \mathbb{F}_{r}\left(S_{1}, \ldots S_{r}\right) d V
$$

where

$$
\begin{gathered}
\mathbb{F}_{0}=1, \mathbb{F}_{1}=S_{1}, \ldots, \mathbb{F}_{r}=S_{r}+\frac{c(n-r+1)}{r-1} \mathbb{F}_{r-2}, \\
2 \leq r \leq n-1
\end{gathered}
$$

Associated to the second variation formula of \mathbb{A}_{r} are the second order differential operators

$$
L_{r} f=\operatorname{tr}\left(T_{r} \nabla^{2} f\right)
$$

and

$$
J_{r} f=L_{r} f-(r+2) S_{r+2} S_{r+2} f+c(n-r) S_{r} f
$$

where f is a differentiable function and $\nabla^{2} f$ is the hessian of f.
When the ambient space is a space form, H. Rosenberg in [12] proved that $L_{r} f=\operatorname{div}\left(T_{r} \nabla f\right)$, where ∇f is the gradient in the induced metric, and thus L_{r} is self-adjoint operator.

Thus, a bilinear symmetric form I_{r} can be defined by

$$
I_{r}(f, g)=-\int_{M} f J_{r} g d V
$$

where f and g are differentiable functions on M.
In [3], H. Alencar, M. do Carmo and M.F Elbert defined stability for r-minimal immersions:

Definition 1.1. Let D be a domain with compact closure and piecewise smooth boundary. D is r-stable if $I_{r}(f, f)>0$ for all $f \in C_{c}^{\infty}(D)$ or if $I_{r}(f, f)<0$ for all $f \in C_{c}^{\infty}(D) . D$ is r - unstable if there exists a function $f \in C_{c}^{\infty}(D)$ such that $I_{r}(f, f)<0$ and there exists a function $g \in C_{c}^{\infty}(D)$ such that $I_{r}(g, g)>0$.

Now we recall the definition of relative nullity. Consider $v(p)=\operatorname{dim} \operatorname{Ker}(A)$, where A is the shape operator associated to the second fundamental form in p. The relative nullity is $v=\min _{p \in M^{n}} v(p)$.

Our first result reads as follows:

Theorem 1.1. Let M^{n} be a complete and orientable Riemannian manifold and let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric r-minimal immersion and $H_{r} \neq 0$ everywhere, $r \geq 1$. If W is open and nonempty, then $v=n-r$. In particular, $x\left(M^{n}\right)$ is foliated by complete totally geodesic submanifolds of dimension $n-r$.

We observe that there exist examples of 1-minimal hypersurfaces with $H_{1} \neq 0$ everywhere in $\mathbb{R}^{2 n}, n \geq 5$, with nonempty W but $v \neq n-1$, see the Example 3.1. These examples show that is necessary to add an extra hypothesis.

Corollary 1.1. Let M^{n} be a complete Riemannian manifold and let $x: M^{n} \rightarrow \mathbb{S}^{n+1}$ be an isometric immersion with $H_{2}=0$ and mean curvature $H_{1} \neq 0$ everywhere. There no exists an immersion x such that the set W is open and nonempty.

Corollary 1.2. Let M^{n} be a complete Riemannian manifold and let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an isometric immersion with $H_{3}=0$ and scalar curvature $H_{2} \neq 0$ everywhere. If W is open and nonempty, then $x\left(M^{n}\right)=\mathbb{S}^{2} \times \mathbb{R}^{n-2}$.
The second result is the following:
Theorem 1.2. Let M^{n} be a complete and orientable Riemannian manifold, and let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}, c \leq 0$, be an isometric r-minimal immersion and $H_{r} \neq 0$ everywhere, $r \geq 1$. If W is nonempty, then x is r-stable.

2 Support function in space of constant curvature

Let us introduce the notions of position vector and support function in \mathbb{Q}_{c}^{n+1}. Consider an isometric immersion $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$. Let s_{c} be a solution of the ordinary differential equation $y^{\prime \prime}+c y=0$, with initial conditions $y(0)=0$ and $y^{\prime}(0)=1$. Then

$$
s_{c}(r)= \begin{cases}r & , \text { if } c=0 \\ \frac{\sin (\sqrt{c} r)}{\sqrt{c}} & , \text { if } c>0 \\ \frac{\sinh (\sqrt{-c} r)}{\sqrt{-c}} & , \text { if } c<0\end{cases}
$$

For every point $p_{0} \in \mathbb{Q}_{c}^{n+1}$, we will consider the function $r()=.d\left(., p_{0}\right)$, where d is the distance function of \mathbb{Q}_{c}^{n+1}, and we will denote by grad r the gradient of the function r in \mathbb{Q}_{c}^{n+1}.

Using the analogy with the Euclidean Space, the vector field $X(p)=$ $s_{c}(r) \operatorname{grad} r$ will be called position vector with origin p_{0}. When $c>0$, the distance function is differentiable in $\mathbb{Q}_{c}^{n+1}-\left\{p_{0},-p_{0}\right\}$. Therefore, in this case, the position vector with origin p_{0} is differentiable in $\mathbb{Q}_{c}^{n+1}-\left\{p_{0},-p_{0}\right\}$.

Let M^{n} be an oriented Riemannian manifold, $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ an isometric immersion, and N a unit normal vector field of x. The function $g: M \rightarrow \mathbb{R}$ defined by $g=\langle X, N\rangle$, where X is the position vector with origin p_{0}, will be called the support function of the immersion x. In the case $c>0$, this function is differentiable if $x(M) \subseteq \mathbb{Q}_{c}^{n+1}-\left\{p_{0},-p_{0}\right\}$.

For the case $c=0,|g(p)|$ is the distance from p_{0} to the tangent hyperplane to $x\left(M^{n}\right)$ at $x(p)$. In [4], the authors give a geometric interpretation of the support function in the case $c \neq 0$. We will describe the interpretation below.

In the case $\mathbf{c}>\mathbf{0}$: We will suppose that \mathbb{Q}_{c}^{n+1} is the sphere of radius $\frac{1}{\sqrt{c}}$ in \mathbb{R}^{n+2}. Then $|g(p)|$ is the euclidean distance from the point p_{0} to the hyperplane which contains the totally geodesic hypersurface tangent to $x\left(M^{n}\right)$ at $x(p)$. In fact, since

$$
p_{0}=\cos (\sqrt{c} r(p)) p-\frac{\sin (\sqrt{c} r(p))}{\sqrt{c}} \operatorname{grad} r(p),
$$

we have

$$
\left\langle p_{0}, N(p)\right\rangle=-\frac{\sin (\sqrt{c} r(p))}{\sqrt{c}}\langle\operatorname{grad} r(p), N(p)\rangle=-g(p) .
$$

So, $|g(p)|=\left|\left\langle p_{0}, N(p)\right\rangle\right|$.
In the case $\mathbf{c}<\mathbf{0}$: Let \mathbb{L}^{n+2} be the euclidean space \mathbb{R}^{n+2} endowed with the Lorenzian metric

$$
\langle\langle u, v\rangle\rangle=u_{1} v_{1}+\ldots+u_{n+1} v_{n+1}-u_{n+2} v_{n+2} .
$$

Let $\mathbb{H}^{n+1}(c)$ be the hypersurface of \mathbb{L}^{n+2} given by

$$
\mathbb{H}^{n+1}(c)=\left\{v \in \mathbb{L}^{n+2} ; v_{n+2}>0,\langle\langle v, v\rangle\rangle=\frac{1}{c}\right\} .
$$

It is well know that $\mathbb{H}^{n+1}(c)$ with the induced metric is a model of hyperbolic space \mathbb{Q}_{c}^{n+1}.
We can assume, without loss of generality, that $p_{0}=\left(0,0, \ldots, 0, \frac{1}{\sqrt{c}}\right)$. In this case, the euclidean distance from the point p_{0} to the hyperplane that passes through the origin of \mathbb{R}^{n+2} and contains the totally geodesic hypersurface, $\left(\mathbb{Q}_{c}^{n}\right)_{p}$, tangent to $x\left(M^{n}\right)$ at $x(p)$, is given by

$$
\frac{|g(p)|}{\sqrt{1+2 g(p)^{2}}} .
$$

In fact, since

$$
p_{0}=\cosh (\sqrt{-c} r(p)) p-\frac{\sinh (\sqrt{-c} r(p))}{\sqrt{-c}} \operatorname{grad} r(p),
$$

we have that

$$
\left\langle\left\langle p_{0}, N(p)\right\rangle\right\rangle=-g(p)
$$

Let $N(p)=\left(N_{1}, \ldots, N_{n+1}, N_{n+2}\right)$. Then

$$
\bar{N}=\frac{1}{\sqrt{1+2 N_{n+2}^{2}}} \cdot N
$$

is a unit vector in \mathbb{R}^{n+2} orthogonal to the hyperplane that passes through the origin of \mathbb{R}^{n+2} and contains $\left(\mathbb{Q}_{c}^{n}\right)_{p}$. Therefore,

$$
|\langle q, \bar{N}(p)\rangle|=\left|\frac{-N_{n+2}}{\sqrt{1+2 N_{n+2}^{2}}}\right|=\frac{|g(p)|}{\sqrt{1+2 g(p)^{2}}},
$$

and this concludes the geometric interpretation.
Lemma 2.1. Let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric immersion, and $0 \leq r<$ $n-1, p \in M^{n}$.
(a) If $S_{r+1}(p)=0$, then T_{r} is semi-definite at p;
(b) If $S_{r+1}(p)=0$ and $S_{r+2}(p) \neq 0$, then T_{r} is definite at p.

Proof. See [5], Proposition 2.8, p. 192.
An other important result is:
Lemma 2.2. Let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric immersion and $p \in M^{n}$.
(a) For $1 \leq r<n$, one has $H_{r}^{2} \geq H_{r-1} H_{r+1}$. Moreover, if equality happens for $r=1$ or for some $1<r<n$, with $H_{r+1} \neq 0$ in this case, then p is umbilical point;
(b) If, for some $1 \leq r<n$, one has $H_{r}=H_{r+1}=0$, then $H_{j}=0$ for all $r \leq j \leq n$. In particular, at most $r-1$ of the principal curvatures are different from zero.

Proof. See [6], Proposition 2.1, p. 176.
The result below is standard, for completeness we will give a proof.

Lemma 2.3. Let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric immersion. The operator L_{r} associated to the immersion x is elliptic if, and only if, T_{r} is positive definitive.

Proof. Let $\left\{\frac{\partial}{\partial x_{i}}\right\}$ be a local frame of M^{n} at p. By direct computation, we have locally the expression of L_{r} :

$$
L_{r} f(p)=\sum_{i, j, k} g^{k j} t_{i k} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-\sum_{i, j, k, l} g^{k j} t_{i k} \Gamma_{i j}^{l} \frac{\partial f}{\partial x_{l}}
$$

where $g_{i j}$ is the metric of $M^{n}, \Gamma_{i j}^{k}$ are the Christoffel symbols and

$$
t_{i j}=\left\langle T_{r}\left(\frac{\partial}{\partial x_{i}}\right), \frac{\partial}{\partial x_{j}}\right\rangle .
$$

From the above local expression, it is easy to conclude that the linear operator L_{r} is elliptic if, and only if, T_{r} is positive definitive.

Corollary 2.1. Let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric immersion. If T_{r} is negative defined, then the operator $-L_{r}$ associated to the immersion x is elliptic.

$3 r$-minimal hypersurface with W nonempty

In this section we will prove the result on r-minimal hypersurface with W nonempty and open.

Theorem 3.1 (Thm. 1.1 in Introduction). Let M^{n} be a complete and orientable Riemannian manifold and let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric r-minimal immersion and $H_{r} \neq 0$ everywhere, $r \geq 1$. If W is open and nonempty, then $v=n-r$. In particular, $x\left(M^{n}\right)$ is foliated by complete totally geodesic submanifolds of dimension $n-r$.

Proof. Let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}$ be an isometric r-minimal immersion, i.e., $H_{r+1}=0$ in M. Let $q \in W$ and X be the position vector with origin q. Fix an orientation, N, such that the support function $g(p)=\langle X(p), N(p)\rangle$ is positive.

In [2], Lemma 2, the authors proved that

$$
L_{r} g=-\left\langle\nabla S_{r+1}, X^{T}\right\rangle-(r+1) S_{r+1} \theta_{c}-\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right) g
$$

where $\theta_{c}=s_{c}^{\prime}$.

By using the equality with $H_{r+1}=0$ we have

$$
\begin{equation*}
L_{r} g=(r+2) S_{r+2} g . \tag{1}
\end{equation*}
$$

Using Lemma 2.1(a) we have that T_{r} is semi-definite. Since H_{r} does not vanish, we have that H_{r} is positive or negative, because $c_{r} H_{r}=\operatorname{tr}\left(T_{r}\right)$, where $c_{r}=(n-r)\binom{n}{r}$. Now we use Lemma 2.2 and obtain:

$$
\begin{equation*}
0=H_{r+1}^{2} \geq H_{r} H_{r+2} . \tag{2}
\end{equation*}
$$

Using the information above, we claim that $H_{r+2} \equiv 0$.
In fact, first we assume that $H_{r+2} \geq 0$. Using (2) and hypothesis we conclude that $H_{r}<0$ and thus T_{r} is negative defined. Applying Corollary 2.1 we have that $-L_{r}$ is elliptic. Whereas from (1) we have

$$
\left(-L_{r}\right) g \leq 0 .
$$

Now, following exactly the proof given by H. Alencar and K. Frensel in [4], Theorem 3.1, we conclude that g attains its minimum in M^{n}. Then, from the Maximum Principle, g is constant. Since g is positive, we have that H_{r+2} vanishes.

Second, we assume $H_{r+2} \leq 0$. Using (2) and $H_{r} \neq 0$ we conclude that $H_{r}>0$ and thus T_{r} is positive defined. Applying Lemma 2.3 we have that L_{r} is elliptic. Whereas from (1) we have

$$
L_{r} g \leq 0 .
$$

Now, following exactly the proof given by H. Alencar and K. Frensel in [4], Theorem 3.1, we conclude that g attains its minimum in M^{n}. Then, from the Maximum Principle, g is constant. Since g is positive, we have that H_{r+2} vanishes.
Thus we conclude that $H_{r+2} \equiv 0$. Now, we use Lemma 2.2(b) to conclude that $H_{j}=0$ for $j \geq r+1$ and so that $v \geq n-r$. Since H_{r} does not change sign we have that $v=n-r$. In particular, we may apply Theorem 5.3 of [7] to deduce that $x\left(M^{n}\right)$ is foliated by complete totally geodesic submanifolds of dimension $n-r$.

Example 3.1. We now describe an example of a 1-minimal hypersurface in \mathbb{R}^{n+1} with W nonempty, but $v \neq n-1$.

Let $G=O(p+1) \times O(p+1)$ be the standard action in $\mathbb{R}^{p+1} \times \mathbb{R}^{p+1}$, where p is an integer greater than 1 . The orbit space of that action can be represented by

$$
\pi\left(\mathbb{R}^{2 p+2}\right)=\Omega=\left\{(x, y) \in \mathbb{R}^{2} ; x \geq 0, y \geq 0\right\}
$$

where $\pi(u, v)=(|u|,|v|)$. If $\gamma(t)=(x(t), y(t))$ is a curve in Ω, then an explicit parametrization of the hypersurface $M=\pi^{-1}(\gamma)$ is given by

$$
f(t, a, b)=x(t) \Phi(a) \oplus y(t) \Psi(b)
$$

where Ψ and Φ are parametrization of the unit sphere \mathbb{S}^{p}.
J. Sato, in [13], Theorem 1.2, classified the profile curve if $M=\pi^{-1}(\gamma)$ has null scalar curvature. These curves, called, type B are interesting for us. Such a curve γ, is regular, intersects orthogonally one of the half-axes $x \geq 0$ or $y \geq 0$ and asymptotes one half-straight line $\gamma_{1}(t)=(\cos (\alpha) t, \sin (\alpha) t)$ or $\gamma_{2}(t)=(\sin (\alpha) t, \cos (\alpha) t)$, where $t \geq 0$ and

$$
\alpha=\frac{1}{4} \arccos \left(\frac{3-2 p}{2 p-1}\right),
$$

when $t \rightarrow \pm \infty$.
Let $h(p)=\langle f(p), N(p)\rangle$ be the support function of the immersion f. The unit normal field is $N(t, a, b)=-y^{\prime}(t) \Phi(a) \oplus x^{\prime}(t) \Psi(b)$. Using the expression for f and N it is possible to verify that $h(p)=-u^{\prime}(t)\left(x^{2}(t)+y^{2}(t)\right)$, where $u=\arctan \left(\frac{y}{x}\right)$.

Moreover, when $p \geq 4$, J. Sato also proved in [13], Lemma 2.3, that $u^{\prime} \neq 0$ for every orbit associated to a profile curve of the type B. Thus, h or $-h$ is positive in M, i.e., W is nonempty. In order to finish our example it is enough to use that

$$
\begin{aligned}
& k_{0}=-\frac{x^{\prime \prime} y^{\prime}+x^{\prime} y^{\prime \prime}}{\left[\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}, \\
& k_{i}=\frac{y^{\prime}}{x \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}}, i=1, \ldots, p, \\
& k_{j}=-\frac{x^{\prime}}{y \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}}, j=p+1, \ldots, 2 p,
\end{aligned}
$$

and thus the rank of the second fundamental form of the immersion is greater than p, when $p \geq 2$.

Example 3.2. H. Alencar described in [1] an example of a minimal hypersurface in $\mathbb{R}^{2 m}$ with W nonempty, but the hypersurface is not totally geodesic. For completeness we will give a sketch of the example.

Let $G=S O(m) \times S O(m)$ be the standard action in $\mathbb{R}^{m} \times \mathbb{R}^{m}$, where m is an integer greater than 1 . The orbit space of that action can be represented by

$$
\pi\left(\mathbb{R}^{2 m}\right)=\Omega=\left\{(x, y) \in \mathbb{R}^{2} ; x \geq 0, y \geq 0\right\}
$$

where $\pi(u, v)=(|u|,|v|)$. If $\gamma(t)=(x(t), y(t))$ is a curve in Ω, then an explicit parametrization of the hypersurface $M=\pi^{-1}(\gamma)$ is given by

$$
f(t, a, b)=x(t) \Phi(a) \oplus y(t) \Psi(b),
$$

where Ψ and Φ are parametrization of the unit sphere \mathbb{S}^{m-1}.
H. Alencar, in [1], Theorem 4.1 and 5.1, classified the profile curve if $M=\pi^{-1}(\gamma)$ has null mean curvature. These curves called as topological type A are interesting for us. Such a curve γ is regular, intersects orthogonally one of the half-axes $x \geq 0$ or $y \geq 0$ and it has asymptote the half-straight line $\gamma(t)=(t, t)$, where $t \geq 0$, when $t \rightarrow \pm \infty$.

Let $h(p)=\langle f(p), N(p)\rangle$ be the support function of the immersion f. The unit normal field is

$$
N(t, a, b)=-y^{\prime}(t) \Phi(a) \oplus x^{\prime}(t) \Psi(b) .
$$

Using the expression for f and N it is possible to verify that

$$
h(p)=-u^{\prime}(t)\left(x^{2}(t)+y^{2}(t)\right),
$$

where $u=\arctan \left(\frac{y}{x}\right)$.
Moreover, when $m \geq 4$, H. Alencar also proved in [1], Proposition 4.4, that $u^{\prime} \neq 0$ for every orbit associated to a profile curve of the topological type A. Thus, h or $-h$ is positive in M, i.e., W is nonempty.

Corollary 3.1 (Cor. 1.1 in Introduction). Let M^{n} be a complete Riemannian manifold and let $x: M^{n} \rightarrow \mathbb{S}^{n+1}$ be an isometric immersion with $H_{2}=0$ and mean curvature $H_{1} \neq 0$ everywhere. There no exists an immersion x such that the set W is open and nonempty.

Proof. Suppose that W is open and nonempty. Using Theorem 3.1 we have $v=n-1$. On the other hand, as any principal curvature has a sign, because $H_{1} \neq 0$ everywhere, we can apply the Theorem 2 in [9], p. 99, to conclude that there exists a principal curvature with an opposite sign. But this is impossible, because $v=n-1$.

Corollary 3.2 (Cor. 1.2 in Introduction). Let M^{n} be a complete Riemannian manifold and let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an isometric immersion with $H_{3}=0$ and scalar curvature $H_{2} \neq 0$ everywhere. If W is open and nonempty, then $x\left(M^{n}\right)=\mathbb{S}^{2} \times \mathbb{R}^{n-2}$.

Proof. Using Theorem 3.1 we have $v=n-2$. Now, we can apply the Theorem 3.4 in [8], p. 11, to conclude that $x\left(M^{n}\right)=\mathbb{S}^{2} \times \mathbb{R}^{n-2}$.

$4 r$-stability

In this section we will prove the result on r-stable hypersurface with W nonempty. One has:

Theorem 4.1 (Thm. 1.2 in Introduction). Let M^{n} be a complete and orientable Riemannian manifold and let $x: M^{n} \rightarrow \mathbb{Q}_{c}^{n+1}, c \leq 0$, be an isometric r-minimal immersion and $H_{r} \neq 0$ everywhere, $r \geq 1$. If W is nonempty, then x is r-stable.

Proof. Let $p_{0} \in W$ and X be the position vector with origin p_{0}. Since $p_{0} \in$ W, we can choose an orientation N in M^{n} for which the support function g is positive. From Lemma 2 in [2] we have $L_{r}(g)-(r+2) S_{r+2} g=0$, provided $H_{r+1}=0$.

First, let us consider $H_{r}>0$. In this case, the operator L_{r} is elliptic.
In [10], Proposition 3.13, M.F. Elbert proved that operator of type $L_{r}+q$, where q is a differentiable function on M^{n}, is positive if and only if there is a positive differentiable function f on M^{n} such that $L_{r} f+q f=0$. Since

$$
J_{r} g=L_{r} g-(r+2) S_{r+2} g=0,
$$

the operator J_{r} is positive definite, i.e.,

$$
\int_{M}\left(\left\langle T_{r} \nabla f, \nabla f\right\rangle+(r+2) S_{r+2} f^{2}\right) d V>0,
$$

for every nonzero function f. Since $c \cdot H_{r} \leq 0$ we have:

$$
\int_{M}\left(\left\langle T_{r} \nabla f, \nabla f\right\rangle+\left((r+2) S_{r+2}-c(n-r) S_{r}\right) f^{2}\right) d V>0
$$

for every nonzero function f. Then

$$
J_{r} \quad L_{r} \quad(r \quad 2) S_{r+2}+c(n-r) S_{r}
$$

is positive definite, i.e., x is r-stable.
Finally, consider $H_{r}<0$. In this case, the operator $\left(-L_{r}\right)$ is elliptic.
In [10], Proposition 3.13, M.F. Elbert proved that operator of type $L_{r}+q$, where q is a differentiable function on M^{n}, is negative if and only if there is a positive differentiable function f on M^{n} such that $L_{r} f+q f=0$. Since

$$
J_{r} g=L_{r} g-(r+2) S_{r+2} g=0
$$

the operator J_{r} is negative definite, i.e.,

$$
\int_{M}\left(\left\langle T_{r} \nabla f, \nabla f\right\rangle+(r+2) S_{r+2} f^{2}\right) d V<0
$$

for every nonzero function f. Since $c \cdot H_{r} \geq 0$ we have:

$$
\int_{M}\left(\left\langle T_{r} \nabla f, \nabla f\right\rangle+\left((r+2) S_{r+2}-c(n-r) S_{r}\right) f^{2}\right) d V<0
$$

for every nonzero function f. Then

$$
J_{r}=L_{r}-(r+2) S_{r+2}+c(n-r) S_{r}
$$

is negative definite, i.e., x is r-stable.

References

[1] H. Alencar. Hipersuperficies Minimas de $\mathbb{R}^{2 m}$ Invariantes por $S O(m) \times$ $S O(m)$. Doctor Thesis, IMPA - Brazil (1988).
[2] H. Alencar and A.G. Colares. Integral Formulas for the r-Mean Curvature Linearized Operator of a Hypersurface. Annals of Global Analysis and Geometry, 16 (1998), 203-220.
[3] H. Alencar, M. do Carmo and M.F. Elbert. Stability of Hypersurface with Vanishing r-Mean Curvatures in Euclidean spaces. J. Reine Angew. Math., 554 (2003), 201-216.
[4] H. Alencar and K. Frensel. Hypersurface Whose Tangent Geodesic Omit a Nonempty Set. Differential Geometry - A Symposium In Honour of Manfredo do Carmo, ed. New York: Longman Scientific \& Technical (1991), 1-13.
[5] A. Caminha. On Hypersurface into Riemannian Space of Constant Sectional Curvature. Kodai Math J., 29 (2006), 185-210.
[6] A. Caminha. Complete Spacelike Hypersurfaces in Conformally Stationary Lorentz manifolds. Gen. Relativ Gravit, 41 (2009), 173-189.
[7] M. Dajczer et al. Submanifolds and Isometric Immersions. Publish or Perish, Houston (1990).
[8] M. Dacjzer and D. Gromoll. Gauss Parametrizations and Rigidity Aspects of Submanifolds. J. Differential Geometry, 22 (1985), 1-12.
[9] M. Dacjzer and D. Gromoll. On Spherical Submanifolds with Nullity. Proc. Am. Math. Soc., 93 (1985), 99-100.
[10] M.F. Elbert. Constant Positive 2-Mean Curvature Hypersurfaces. Illinois J. Math., 46(1) (2002), 247-267.
[11] T. Hasanis and D. Koutroufiots. A Property of Complete Minimal Surfaces. Trans. Amer. Math. Soc., 281 (1984), 833-843.
[12] H. Rosenberg. Hypersurfaces of Constant Curvature in Space Forms. Bull. Sc. Math., 117 (1993), 217-239.
[13] J. Sato. Stability of $O(p+1) \times O(p+1)$-Invariant Hypersurfaces with Zero Scalar Curvature in Euclidean Space. Annals of Global Analysis and Geometry, 22 (2002), 135-153.

Hilário Alencar

Universidade Federal de Alagoas
Instituto de Matemática
57072-970 Maceió, AL
BRAZIL
E-mail: hilario@pos.mat.ufal.br

Márcio Batista

Universidade Federal de Alagoas
Instituto de Matemática
57072-970 Maceió, AL
BRAZIL
E-mail: mhbs28@impa.br

[^0]: *The author is partially supported by CNPq.

