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Recently, Abresch and Rosenberg [1] have extended Hopf’s The-
orem on constant mean curvature to 3-dimensional spaces other
than the space forms. Here we show that, rather than assuming
constant mean curvature, it suffices to assume an inequality on the
differential of the mean curvature.

1. Introduction

In 1951, Hopf [9] published a theorem in a seminal paper on surfaces of
constant mean curvature which can be stated as follows. Let a genus zero
compact surface M be immersed in R

3 with constant mean curvature H.
Then M is isometric to the standard sphere. Hopf gave two proofs of this
result (see [9] for details). Both proofs depend on the fact that any surface
can be given isothermal parameters (u, v), i.e., ds2 = λ2(du2 + dv2), where
λ2 is a function on M , so that M can be viewed as a Riemann surface with
local parameter z = u + iv.

To fix the notation and for future reference, we will summarize both
proofs.

In the first proof, one considers the second fundamental form α in
isothermal parameters and takes the (2, 0)-component of α, α(2,0) = (1/2)ψ
dz dz. It can be shown that the complex function ψ is holomorphic iff H =
const. and that the zeroes of ψ are the umbilic points in M . It is also seen
that the quadratic form α(2,0) does not depend on the parameter z; hence,
it is globally defined on M . It is a known theorem on Riemann surfaces
that if the genus g of M is zero, any holomorphic quadratic form vanishes
identically. Then ψ ≡ 0, i.e., all points of M are umbilics, and hence M is a
standard sphere.

From our point of view, the second proof is even more interesting. The
quadratic equation Im(ψdz2) = 0 determines two fields of directions (the
principal directions) the singularities of which are the zeroes of ψ. Since ψ
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is holomorphic, if z0 is a zero of ψ, either ψ ≡ 0 in a neighborhood V of
z0 or

ψ(z) = (z − z0)kfk(z), z ∈ V, k ≥ 1,

where fk is a function of z with fk(z0) �= 0. It follows that z0 is an isolated
singularity of the field of directions and its index is (−k/2). Thus, either
α(2,0) ≡ 0 on M , and we have a standard sphere, or all singularities are
isolated and have negative index. Since g = 0, the sum of the indices of
all singularities for any field of directions is two (hence positive). This is a
contradiction, so α(2,0) ≡ 0 on M .

Notice that in the second proof the fact that ψ is holomorphic is only
used to show that the index of an isolated singularity of the field of directions
is negative and that either ψ ≡ 0 or the zeroes of ψ are isolated.

Recently, Abresch and Rosenberg [2] considered a surface M immersed
in M2(c) × R, where M2(c) is a (complete simply connected) 2-dimensional
Riemannian manifold with constant curvature c and introduced on M the
quadratic form

(1.1) Q(X, Y ) = 2Hα(X, Y ) − c〈ξX, ξY 〉;

here, X and Y are tangents vectors to M and ξ : M2(c) × R → R is the
natural projection onto R, i.e., ξ(p, t) = t, p ∈ M2(c), t ∈ R; we have, for
notational simplicity, identified ξ with its differential dξ. Let Q(2,0) be the
(2, 0)-component of Q.

Abresch and Rosenberg proved that Q(2,0) is holomorphic if H = const.
on M , and if M is a genus zero compact surface, then M is an embedded
surface invariant by rotations in M2(c) × R (see [1] and the references there
for details).

The goal of the present paper is to show that the above result still holds if
H is not necessarily constant but its differential satisfies a certain inequality.
More precisely, we prove

Theorem 1.1. Let M be a compact immersed surface of genus zero in
M2(c) × R. Assume that

|dH| ≤ g|Q(2,0)|,

where |dH| is the norm of the differential dH of the mean curvature H of M,
and g is a continuous, non-negative real function. Then Q(2,0) is identically
zero, and M is an embedded surface invariant by rotations in M2(c) × R.
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A crucial point in our proof is to observe, as already noticed by Eschen-
burg and Tribuzy [6], that the second proof of Hopf uses only a weak notion
of holomorphy and try to enclose that in a form that we can use. The out-
come is the following lemma which is an adaptation of results of Chern [5]
and Eschenburg and Tribuzy [6].

Main Lemma. Let f : U ⊂ C → C be a complex function defined in an open
set U of the complex plane. Assume that

(1.2)
∣
∣
∣
∣

∂f

∂z̄

∣
∣
∣
∣
≤ h(z) |f(z)|,

where h is a continuous, non-negative real function. Assume further that
z = z0 ∈ U is a zero of f . Then either f ≡ 0 in a neighborhood V ⊂ U of
z0, or

f(z) = (z − z0)k fk(z), z ∈ V, k ≥ 1,

where fk(z) is a continuous function with fk(z0) �= 0.
Thus condition (1.2) implies the weak condition of holomorphy that is

used in Hopf’s second proof. Following Eschenburg and Tribuzy [6], we call
(1.2) a Cauchy–Riemann inequality.

We will prove the Main Lemma in Section 3 of this paper.
It is interesting to observe the context in which the work [5] of Chern

was written. In Hopf’s paper of 1951, it was also proved that the theorem
would hold for special Weingarten surfaces M provided they were analytic.
A Weingarten surface is a surface for which there exists a functional rela-
tion between the principal curvatures: W (k1, k2) = 0. If this relation can
be solved in, say, k2 and dk2/dk1 = −1, when k1 = k2 , we say that the
Weingarten surface is special, a notion introduced by Chern [4] in 1945.

The requirement that the special Weingarten surfaces were analytic for
the validity of Hopf’s theorem was removed by Hartman and Wintner [8] in
1954. Their paper is somewhat long. In the following year, Chern gave in
[5] a short and elegant proof of the result of Hartman and Wintner. Chern’s
proof depends on a lemma from which our Main Lemma is an adaptation.

2. Proof of Theorem 1.1 assuming the Main Lemma

Let (u, v) be isothermal parameters in an open set U ⊂ M and set z = u +
iv, dz = 1/

√
2(du + i dv), dz̄ = 1/

√
2(du − i dv). Set Q(2,0) = (1/2)ψ(z)dz dz
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and assume that there exists a point z0 ∈ U such that ψ(z0) = 0. Set

Z =
1√
2

(
∂

∂u
− i

∂

∂v

)

, Z =
1√
2

(
∂

∂u
+ i

∂

∂v

)

.

Since (u, v) are isothermal parameters, 〈Z,Z〉 = λ2, where λ2 = 〈∂/∂u,
∂/∂u〉 = 〈∂/∂v, ∂/∂v〉. Notice that Q(Z, Z) = ψ(z) and set |Q(Z, Z)| =
|ψ(z)|.

For future purposes, it will be convenient to consider the more general
ambient space Mn(c) × R, where Mn(c) is a Riemannian manifold with
constant sectional curvature c. Let M ↪→ Mn(c) × R be an immersed surface
and set, in this new situation,

(2.1) Q(X, Y ) = 2〈α(X, Y ), �H〉 − c〈ξX, ξY 〉,

where �H = HN is the mean curvature vector of the immersion, α is the
normal-valued second fundamental form and ξ: Mn(c) × R → R is again the
projection ξ(p, t) = t.

We first want to compute

∂ψ

∂z̄
= Z Q(Z, Z) = 2Z〈α(Z, Z), �H〉 − cZ〈ξZ, ξZ〉.

The first term yields

2Z〈α(Z, Z), �H〉 = 2〈∇⊥
Z

α(Z, Z), �H〉 + 2〈α(Z, Z),∇⊥
Z

�H〉.

By definition,

(

∇⊥
Z
α
)

(Z, Z) = ∇⊥
Z
α(Z, Z) − 2α〈∇ZZ, Z〉 = ∇⊥

Z
α(Z, Z),

since, as it is easily checked, ∇ZZ = 0. Thus

2Z〈α(Z, Z), �H〉 = 2〈(∇⊥
Z
α)(Z, Z), �H〉 + 2〈α(Z, Z),∇⊥

Z
�H〉,

hence, by using Codazzi equation, and denoting by R̃ the curvature of the
ambient space,

2Z〈α(Z, Z), �H〉 = 2〈∇⊥
Z α(Z, Z), �H〉 + 2〈R̃(Z, Z)Z, �H〉 + 2〈α(Z, Z),∇⊥

Z
�H〉.

We now need the following.
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Lemma 2.1. With the above notation,

〈R̃(Z, Z)Z, �H〉 = cλ2〈ξZ, ξ �H〉.

Proof of Lemma 2.1. Let π : Mn(c) × R → Mn(c) be defined by π(p, t) = p
and identifying, for convenience of notation, π and ξ with their differentials,
we obtain that X = πX + ξX. Since the ambient space is a product space,
we have for its curvature R̃

〈R̃(Z,Z)Z, �H〉 = c
{

〈πZ, πZ〉〈πZ, π �H〉 − 〈πZ, πZ〉〈πZ, π �H〉
}

.

Let us compute the various terms of R̃,

〈πZ, πZ〉 = 〈Z − ξZ, Z − ξZ〉
= 〈Z, Z〉 − 〈Z, ξZ〉 − 〈ξZ, Z〉 + 〈ξZ, ξZ〉
= λ2 − 〈πZ + ξZ, ξZ〉 − 〈ξZ, πZ + ξZ〉 + 〈ξZ, ξZ〉
= λ2 − 2〈ξZ, ξZ〉 + 〈ξZ, ξZ〉 = λ2 − 〈ξZ, ξZ〉.

On the other hand, since 〈Z, N〉 = 0, we have

〈πZ, π �H〉 = 〈Z − ξZ, �H − ξ �H〉
= −〈ξZ, �H〉 − 〈Z, ξ �H〉 + 〈ξZ, ξ �H〉
= −〈ξZ, ξ �H〉.

Thus, the first term in the right-hand side becomes

〈πZ, πZ〉〈πZ, π �H〉 = −(λ2 − 〈ξZ, ξZ〉)(〈ξZ, ξ �H〉)
= −λ2〈ξZ, ξ �H〉 + 〈ξZ, ξZ〉〈ξZ, ξ �H〉.

For the second term, we have, since 〈Z, Z〉 = 0,

〈πZ, πZ〉 = 〈Z − ξZ, Z − ξZ〉
= −〈Z, ξZ〉 − 〈ξZ, Z〉 + 〈ξZ, ξZ〉 = −〈ξZ, ξZ〉

and

〈πZ, π �H〉 = 〈Z − ξZ, �H − ξ �H〉 = −〈ξZ, ξ �H〉,

hence

〈πZ, πZ〉〈πZ, π �H〉 = 〈ξZ, ξZ〉〈ξZ, ξ �H〉.
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It follows that

〈R̃(Z,Z)Z, �H〉 = c
{

(−λ2〈ξZ, ξ �H〉 + 〈ξZ, ξZ〉〈ξZ, ξ �H〉
− 〈ξZ, ξZ〉〈ξZ, ξ �H〉

}

= −cλ2〈ξZ, ξ �H〉,

where we have taken into account that 〈ξX, ξY 〉 is ±|ξX| |ξY |. Finally, by
the usual symmetries of the curvature tensor, we conclude that

〈R̃(Z, Z)Z, �H〉 = cλ2〈ξZ, ξ �H〉.
�

Back to the computation of ZQ(Z, Z), we have

ZQ(Z, Z) = 2〈(∇⊥
Z α)(Z, Z), �H〉 + 2cλ2〈ξZ, ξ �H〉

+ 2〈α(Z, Z),∇⊥
Z

�H〉 − cZ〈ξZ, ξZ〉.

To simplify the above expression, we need another lemma.

Lemma 2.2. cZ〈ξZ, ξZ〉 = 2cλ2〈ξZ, ξ �H〉.

Proof of Lemma 2.2. We first observe that

α(Z,Z) = ∇ZZ − (∇Z Z)T = ∇ZZ,

since that, by a simple computation, it is seen that ∇Z Z = 0. Since the
ambient space is a product Mn(c) × R with natural projections π and ξ, we
can write

∇ZZ = ∇Z(ξZ + πZ) = ∇1
Z
(ξZ) + ∇2

Z
(πZ)

where ∇1 and ∇2 are the connections of R and Mn(c), respectively. Thus,

ξ α(Z,Z) = ξ ∇Z Z = ξ ∇1
Z
(ξZ) + ξ ∇2

Z
(πZ) = ∇1

Z
(ξZ),

hence

〈ξ α(Z,Z), ξZ〉 = 〈∇1
Z
(ξZ), ξZ〉 = 〈∇Z(ξZ), ξZ〉.

Now let us compute Z〈ξZ, ξZ〉.

Z〈ξZ, ξZ〉 = 2〈∇Z(ξZ), ξZ〉 = 2〈ξ α(Z,Z), ξZ〉.
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Set E = 1/
√

2 (e1 − ie2), where e1 and e2 are the unit vectors of ∂/∂u,
∂/∂v, respectively. Thus, Z = λE and

α(Z,Z) = λ2α(E, E) = λ2α

(
e1 − ie2√

2
,
e1 + ie2√

2

)

=
λ2

2
{α(e1, e1) + α(e2, e2)} = λ2 �H,

hence

Z〈ξZ, ξZ〉 = 2〈∇Z(ξZ), ξZ〉 = 2〈ξα(Z,Z), ξZ〉 = 2λ2〈ξ �H, ξZ〉

and this proves Lemma 2.2. �
It follows from Lemma 2.2 that

Z Q(Z, Z) = 2〈(∇⊥
Z α)(Z, Z), �H〉 + 2〈α(Z, Z),∇⊥

Z
�H〉.

The first term in the right-hand side can be computed as follows. By
definition,

(∇⊥
Z α)(Z, Z) = ∇⊥

Z (α(Z, Z)) − α(∇ZZ, Z)

−α(Z,∇ZZ) = Z(〈Z, Z〉 �H) − α(Z,∇ZZ),

where we have used that α(Z,Z) = λ2 �H (see Lemma 2.2) and that ∇ZZ = 0.
Thus

(∇⊥
Z α)(Z, Z) = 〈∇ZZ, Z〉 �H + 〈Z,∇ZZ〉 �H + 〈Z, Z〉∇⊥

Z
�H − α(Z,∇ZZ).

Now let E as defined in Lemma 2.2. Then any complex vector X on
M is given by X = ξE, where ξ is a complex number. Thus if Y = η E, we
obtain

α(X, Y ) = ξη α(E, E) = 〈X, Y 〉 �H.

Setting in the above X = ∇ZZ and Y = Z, we have

(∇⊥
Z α)(Z, Z) = 〈Z, Z〉∇⊥

Z
�H + 〈Z,∇ZZ〉 �H − 〈∇ZZ,Z〉 �H = 〈Z,Z〉∇⊥

Z
�H.

Coming back to Z Q(Z, Z), we obtain finally

(2.2) Z Q(Z, Z) = 2〈〈Z,Z〉∇⊥
Z

�H, �H〉 + 2〈α(Z, Z),∇⊥
Z

�H〉,

where the right-hand side of the equality is expressed in terms of the covari-
ant derivatives of the mean curvature vector.
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Remark 2.3. At this point, we have obtained the following generalization
of Theorem 1 of Abresch and Rosenberg [2]. Let M be an immersed surface
in Mn(c) × R such that its mean curvature vector �H is parallel in the normal
bundle. Introduce a complex structure in M compatible with the induced
metric. Then the (2, 0)-part of the quadratic form on M

Q(X, Y ) = 2〈α(X, Y ), �H〉 − c〈ξX, ξY 〉

is holomorphic. Here α is the second quadratic form of the immersion and
ξ is the projection of the ambient space on the factor R. It is a natural
question to ask which surfaces in Mn(c) × R satisfy the condition that the
above quadratic form is holomorphic.

Back to the proof of our Theorem 1.1, we now specialize for n = 2 expres-
sion (2.2). Since the codimension is now one, ∇⊥

XN = 0, for all X ∈ TM ,
where N is the unit normal vector to the surface M . Thus

∇⊥
Z

�H = ∇⊥
Z
(HN) = (ZN)N,

and we obtain

Z Q(Z, Z) = 2λ2Z(H)H + 2α(Z, Z)(ZH).

Since

|Z(H)| = |dH(Z)| ≤ |dH| |Z| = |dH|λ,

and similarly for |Z(H)|, we have

|Z Q(Z, Z)| ≤
{

2λ3|H| + 2λ|α(Z, Z)|
}

|dH|.

By the hypothesis of the Theorem 1.1, |dH| ≤ g|Q(2,0)|. Thus, we obtain

|Z Q(Z, Z)| ≤ h(z) |Q(Z, Z)|,

where h is continuous and non-negative. Then we can apply the Main
Lemma and we obtain the following.

Let U ⊂ M be an open set covered by isothermal coordinates. Assume
that the set of zeros of Q(Z, Z) in U is not empty and let z0 ∈ U be a zero
of Q(Z, Z). By the Main Lemma, either Q(Z, Z) is identically zero in a
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neighborhood V of z0 or this zero is isolated and the index of a direction
field determined by Im[Q(Z, Z)dz2] = 0 is (−k/2) (hence negative). If, for
some coordinate neighborhood V of zero, Q(Z, Z) ≡ 0, this will be so for the
whole M ; otherwise, the zeroes on the boundary of V will contradict the
Main Lemma. So if Q(Z, Z) is not identically zero, all zeroes are isolated
and have negative indices. Since M has genus zero, the sum of the indices
of the singularities of any field of directions is 2 (hence positive). This
contradiction shows that Q(Z, Z) is identically zero. Using the classification
result of Abresch–Rosenberg, Theorem 1.1 follows.

Remark 2.4. The result of Abresch and Rosenberg applies only to genus
zero compact surfaces with constant mean curvature. On the other hand, our
result states that either the set of zeroes of Q(2,0) is empty, or in a neigh-
borhood V of a zero of Q(2,0) where the condition |dH| ≤ g|Q(2,0)| holds,
we have two possibilities: (1) Q(2,0) ≡ 0 in V or (2) such a zero is an iso-
lated critical point of one of the direction fields given by Im[Q(Z, Z)dz2] = 0
whose index is negative (these two direction fields are orthogonal since their
unit vectors diagonalize the real quadratic form Q(X, Y ) in Equation (1)).
In this form, the result can be applied to an immersion of a genus one
surface M satisfying |dH| ≤ |Q(2,0)|. Since no torus appears in the classi-
fication of surfaces with |Q(2,0)| ≡ 0 [1, Theorem 3], and by Poincaré the-
orem, no isolated zeroes can occur, we conclude that there are no singu-
larities in the field of directions given by [ImQ(Z, Z)dz2] = 0. It follows
that there exists a global adapted frame in M that diagonalizes Q (cf.
[2, Theorem 3], where a similar result is obtained in R

3 from a different
hypothesis).

Remark 2.5. Our theorem also applies to the non-compact case. Con-
sider a disk-type surface Σ with smooth boundary ∂Σ satisfying the fol-
lowing conditions: (1) Σ is regular up to the boundary, i.e., there exists
a smooth surface Σ̂ ⊃ Σ ∪ ∂Σ; (2) the boundary ∂Σ satisfies the equation
[Im Q(Z, Z)dz2] = 0; (3) in Σ̂, dH ≤ g|Q(2,0)|. Then, by using the Main
Lemma and the computations of the present paper, it can be shown that Σ
is one of the surfaces that have |Q(2,0)| ≡ 0 and are described in Theorem 3
of [1]. If we include the possibility that ∂Σ has nonregular points (vertices),
we must add the condition; (4) the number of vertices that have angles < π
is at most 3, and the result is the same. This is related to a result of Choe
in R

3 [10]. Proofs will be given in a forthcoming paper by one of us (M. do
Carmo) and I. Fernandez.
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3. Proof of the Main Lemma

We can assume that the zero of f is the origin 0 and that U is a disk D of
radius R and center 0. We need some auxiliary lemmas. We follow Chern
[5] (see also Hartman and Wintner [7] and Carleman [3]).

Lemma 3.1. Assume the hypothesis of the Main Lemma and the fact that
limz→0 f(z)/zk−1 = 0; k ≥ 1. Then limz→0 f(z)/zk exists.

Lemma 3.2. Under the hypothesis of the Main Lemma assume that limz→0
f(z)/zk−1 = 0; for all k ≥ 1. Then f ≡ 0 in some neighborhood of 0.

From these two lemmas, the Main Lemma follows. Indeed, from Lemma
(3.2) we obtain that if f is not identically zero in a neighborhood of 0, there
exists a k such that limz→0 f(z)/zk−1 = 0 but limz→0 f(z)

/

zk may not exist.
By Lemma (3.1), we know that limz→0 f(z)

/

zk exists, hence is non-zero, say
c. Thus, we can write

f(z) = c zk + R, lim
z→0

R

zk
= 0

or

f(z) = zk fk(z), fk(z) = c +
R

zk
,

so that fk(0) = c �= 0, and this proves our claim.
It remains to prove Lemmas (3.1) and (3.2).

Proof of Lemma 3.1. From now on, we denote by Dc(ζ) a disk in the plane
C with center ζ and radius c. Let w ∈ DR(0), w �= 0, and in W = DR(0) −
{Da(0) ∪ Da(w)} define a differential form

ϕ =
f(z)

zr(z − w)
dz.

Since 1/zr(z − w) is holomorphic in W , we obtain

dϕ =
∂ϕ

∂z̄
dz̄ ∧ dz = − 1

zr(z − w)
∂f

∂z̄
dz ∧ dz̄.

Now take disks Da(0) and Da(w) in DR(0) and apply Stokes theorem,

(3.1)
∫∫

W
dϕ +

∫

∂DR(0)
ϕ −

∫

∂Da(0)
ϕ −

∫

∂Da(w)
ϕ = 0.
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Let us compute explicitly the integrals in (3.1). Set g(z) = f(z)/zr and
z = w + aeiθ, 0 ≤ θ ≤ 2π. Then

∫

∂Da(w)
ϕ =

∫

∂Da(w)

g(z)
(z − w)

dz =
∫ 2π

0

g(w + aeiθ)
aeiθ

aieiθ dθ,

and

lim
a→0

∫

∂Da(w)
ϕ = ig(w)

∫ 2π

0
dθ = 2πi f(w)w−r.

Next, set z = aeiθ and, since by hypothesis, limz→0 f(z)/zr−1 = 0, we obtain

lim
a→0

∫

∂Da(0)
ϕ = lim

a→0

∫ 2π

0

f(aeiθ) i dθ

ar−1e(r−1)iθ(aeiθ − w)
= 0.

It follows, by taking the limits in (1) when a → 0, that

(3.2) −2πi f(w)w−r +
∫

∂DR(0)

f(z)dz

zr(z − w)
=

∫∫

DR(0)

1
zr(z − w)

∂f

∂z̄
dz ∧ dz̄,

where the limit in the double integral exists, because the left-hand side is
well defined.

Since the function h in the statement of the Main Lemma is continuous,
there exists A > 0 such that

max
z∈DR(0)

h(z) ≤ A.

Then, it follows from (3.2),

(3.3) 2π |f(w)w−r| ≤
∫

∂DR(0)

|f(z)| |dz|
|zr| |z − w| +

∫∫

DR(0)

2A|f(z)|
|z|r |z − w| du ∧ dv,

since dz ∧ dz̄ = −2i du ∧ dv, z = u + iv.
Now take z0 ∈ D with z0 �= 0, multiply the above inequality by 1/|w −

z0|, and integrate it relative to dx ∧ dy, where w = x + iy. Then, by setting
Dε = DR(0) − Dε(z0), we have,

∫

Dε

2π|f(w)w−r|
|w − z0|

dx ∧ dy ≤
∫

Dε

∫

∂DR(0)

|f(z)||dz|
|z|r|z − w||w − z0|

dx ∧ dy

+
∫

Dε

∫∫

DR(0)

2A|f(z)|du ∧ dv

|z|r|z − w||w − z0|
dx ∧ dy(3.4)
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We want to estimate the integrals in (3.4). For this, we first observe that

(3.5)
1

|z − w| |w − z0|
=

1
|z − z0|

∣
∣
∣
∣

1
(z − w)

+
1

(w − z0)

∣
∣
∣
∣

and that

(3.6)
∫

DR(0)

dx ∧ dy

|z − w| ≤
∫

D2R(z)

dx ∧ dy

|z − w| =
∫ 2R

0

∫ 2π

0

ρ dθ dρ

ρ
= 4πR.

It follows that, for the first term on the right-hand side of inequality
(3.4), we obtain
∫

Dε

∫

∂DR(0)

|f(z)| |dz|
|z|r |z − w| |w − z0|

dx ∧ dy ≤
∫

Dε

∫

∂DR(0)

|f(z)| |dz|
|z|r |z − z0|

dx ∧ dy

|w − z0|

+
∫

Dε

∫

∂DR(0)

|f(z)| |dz|
|z|r |z − z0|

dx ∧ dy

|z − w| ≤ 8πR

∫

∂DR(0)

|f(z)| |dz|
|z|r |z − z0|

,

where we have used (3.5) and (3.6). Similarly, for the second term on the
right-hand side of (3.4), we obtain

2A

∫

Dε

∫∫

DR(0)

|f(z)|
|z|r

du ∧ dv

|z − w| |w − z0|
dx ∧ dy

≤ 16AπR

∫∫

DR(0)

|f(z)|
|z|r |z − z0|

du ∧ dv.

Thus, we can write the inequality (3.4) as

2π

∫

Dε

|f(w)| |w|−r

|w − z0|
dx ∧ dy ≤ 8πR

∫

∂DR(0)

f(z) |dz|
|z|r |z − z0|

+ 16AπR

∫∫

DR(0)

|f(z)|du ∧ dv

|z|r |z − z0|

or

(3.7) (1 − 8AR)
∫∫

DR(0)

|f(z)|
|z|r |z − z0|

du ∧ dv ≤ 4R

∫

∂DR(0)

|f(z)| |dz|
|z|r |z − z0|

·

Since A does not change if R decreases, we can choose R small enough so
that 1 − 8AR > 0.

Now, the integral in the right-hand side of (3.7) is bounded as z0 →
0; hence, the same holds for the integral in the left-hand side. Since its
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integrand increases monotonically as z0 → 0, we have that

lim
z0→0

∫∫

DR(0)

f(z)
|z|r|z − z0|

du ∧ dv

exists. It follows from (3.3) and that f(w)w−r is bounded when w → 0.
Thus, from (3.2), we conclude that f(w)w−r exists, as we wished. �

Proof of Lemma 3.2. Assume that f is not identically zero in a neighbor-
hood of 0 and let z0 be such that f(z0) �= 0, |z0| < R.

Now by multiplying the inequality (3.3) by dx ∧ dy and integrating, we
obtain

2π(1 − 8AR)
∫∫

DR(0)
|f(w)| |w|−r dx dy

≤ 8πR

∫

∂DR(0)

|f(z)| |dz|
|z|r , for all r ≥ 1.

(3.8)

Notice that, by setting

D∗ =
{

z ∈ DR(0); |z| ≤ |z0| and |f(z)| ≥ |f(z0)|
2

}

we obtain

(1 − 8AR)
∫∫

DR(0)
|f(z)| |z|−r du ∧ dv

≥ (1 − 8AR)
∫∫

D∗
|f(z)| |z|−r du ∧ dv

≥ 1 − 8AR

2
|f(z0)| |z0|−r vol D∗ = a|z0|−r,

where a = 1 − 8AR/2|f(z0)| vol D∗.
On the other hand,

4R

∫

∂DR(0)
|f(z)| |z|−r |dz| ≤ b R−r,

where

b = 4R max
∂DR(0)

|f(z)|
∫

∂DR(0)
|dz|.
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It follows from those estimates and (3.8) that a|z0|−r ≤ b R−r, for all r,
where a and b do not depend on r. Thus, since |z0| < R,

0 ≤ lim
r→∞

a

b
≤ lim

r→∞

(
|z0|
R

)r

= 0.

Because a = 1 − 8AR/2|f(z0)| vol D∗, this implies that |f(z0)| = 0, a con-
tradiction to the definition of z0. This completes the proof of Lemma (3.2)
and of the Main Lemma. �

4. Further results and questions

Bryant proved the following result in [7]. Let M be a compact surface of
genus zero immersed in R

3 and let f be any smooth function defined in an
open interval containing [0,∞). Then if M satisfies a Weingarten relation
of the form

H = f(H2 − K) = f
(

|α(2,0)|2
)

,

where α(2,0) is the (2, 0)-part of the second quadratic form in M , then M is
isometric to a sphere.

We can generalize this result as follows.

Proposition 4.1. Let M be a compact surface of genus zero immersed in
M2(c) × R and let f be a smooth function. Assume that

(4.1) H = f(|Q(2,0)|2).

Then Q(2,0) ≡ 0 and the conclusion of Theorem 1.1 applies.

Proof. |dH| = |df | |d(|Q(2,0)|2)|.
But

|Q(2,0)|2 = Q(2,0) Q
(2,0)

.

Thus

d|Q(2,0)|2 = dQ(2,0) Q
(2,0) + Q(2,0) dQ

(2,0)

and

|d |Q(2,0)|2| ≤ |dQ(2,0)| |Q(2,0)| + |Q(2,0)| |dQ
(2,0)|

= |Q(2,0)|
{(

|dQ(2,0)| + |dQ
(2,0)|

)}

.
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It follows that

|dH| ≤ |df |
(

|dQ(2,0)| + |dQ
(2,0)|

)

|Q2,0)| = g|Q(2,0)|,

where we have set g = |df |
(

|dQ(2,0)| + |dQ
(2,0)|

)

. Therefore, we are in the
conditions of Theorem 1.1, and the result follows. �

A natural question is the following. In the case of Bryant’s theorem,
it is known that |α(2,0)|2 = H2 − K. It would be interesting to know an
expression of |Q(2,0)|2 in terms of simple geometric invariants of M .

Also, from the function f defined in the above Bryant’s statement, he
constructs a quadratic form globally defined on the Weingarten surface M ,
not necessarily homeomorphic to a sphere, which is shown to be holomorphic
on M . As an application he shows, for instance, that a smooth immersion
of a torus T 2 satisfying a Weingarten relation as above is free of umbilics
and there exists a global principal adapted frame on T 2.

Is it possible to construct such a holomorphic quadratic form on Wein-
garten surfaces immersed in M2(c) × R? This may turn out to be useful
even if one has to consider some restricted Weingarten relation. A relevant
geometric problem related to that is which are the closed immersed surfaces
in M2(c) × R with constant Gaussian curvature?

Remark 4.2. As in Remark 2.4, we only need condition (4.1) in a neigh-
borhood of a point where Q(2,0) = 0, and again the result of the above propo-
sition can be stated in a way (cf. Remark 2.4) that it applies to compact
surfaces M not necessarily homeomorphic to spheres.
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