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Abstract. We consider closed hypersurfaces of the sphere with scalar curvature one, prove a
gap theorem for a modified second fundamental form and determine the hypersurfaces that are
at the end points of the gap. As an application we characterize the closed, two-sided index one
hypersurfaces with scalar curvature one in the real projective space.
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1. Introduction

To state our main result we need some notation.
x : Mn → Sn+1(1) will be a closed (compact without boundary) hypersurface

of the unit sphere Sn+1(1). We denote by A the linear map associated to the
second fundamental form and by k1, . . . , kn its eigenvalues (principal curvatures
of M). We will use the first two elementary symmetric function of the principal
curvatures:

S1 =
n∑

i=1

ki, S2 =
n∑

i<j=1

kikj .

We will also use the normalized means: the mean curvature H =
1
n

S1 and the

scalar curvature R, given by n(n− 1)(R− 1) = S2. Finally, we introduce the first
two Newton tensors by

P0 = Id, P1 = S1Id−A.

Clearly P1 commutes with A and it is also a self-adjoint operator. We will show
later (see Remark 2.1) that if R = 1 and S1 ≥ 0, then all eigenvalues of P1 are
nonnegative, hence we can consider

√
P1.

*Partially supported by CNPq, Brazil.
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We can now state our gap theorem.

Theorem 1. Let x : Mn → Sn+1(1) be a closed orientable hypersurface with
scalar curvature R = 1 (equivalently, S2 = 0). Assume that S1 does not change
sign and choose the orientation such that S1 ≥ 0. Assume further that

‖
√

P1A‖2 ≤ traceP1.

Then:
(i) ‖√P1A‖2 = traceP1.
(ii) Mn is either a totally geodesic submanifold or Mn = Sn1(r1)× Sn2(r2) ⊂

Sn+1(1), where n1 + n2 = n, r2
1 + r2

2 = 1 and
(

r2

r1

)2

= β satisfies the quadratic

equation:
n1(n1 − 1)β2 − 2n1n2β + n2(n2 − 1) = 0.

Our theorem was inspired by a similar theorem on minimal submanifolds of the
sphere first proved by J. Simons [S] (part (i)) and latter completed (part (ii)) by
S. S. Chern, M. do Carmo and Kobayashi [CdCK] and, independently, by H. B.
Lawson [L].

Remark. The condition on the modified second fundamental form in above theo-
rem can not be dropped, as can be seen by the following example: Let M6 → S7(1)
be an isoparametric hypersurface with principal curvatures given by

λ1 = λ2 = θ, λ3 =
θ + 1
1− θ

, λ4 = λ5 = −1
θ

and λ6 = −1− θ

1 + θ
,

where θ is given by θ =

√
13 +

√
165

2
(see [M]). It is easy to see that M6 has

R = 1 and S1 > 0. We would like to thank Luiz Amancio de Sousa Junior for
showing us this example.

As an application of Theorem 1, we will present a characterization of index
one closed hypersurfaces with constant scalar curvature one of the real projective
space P(R)n+1. For minimal submanifolds this result was obtained recently by M.
do Carmo, M. Ritoré and A. Ros [dCRR].

Before giving a formal statement we need some considerations. Hypersurfaces
of a curvature one space form with constant scalar curvature one are solutions to
a variational problem (see [Re], [Ro], [BC]) whose Jacobi equation is

T1f = L1f + {‖
√

P1A‖2 + traceP1}f = 0.

Here f ∈ C∞(M) and L1 is a second order differential operator given by

L1f = div(P1∇f),
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where ∇f is the gradient of f . Notice that L1 generalizes the Laplacian. However,
differently from the Laplacian, L1 is not always elliptic. J. Hounie and M. L. Leite
[HL] have proved that if S3 6= 0 everywhere, then L1 is elliptic. Of course, from
the definition of L1, it follows that L1 is elliptic if and only if P1 is positive definite
(or negative definite). For the next theorem we will assume that L1 is elliptic and
P1 is positive definite. Denote by Ind(M) the Morse index of M , i.e., the number
of negative eigenvalues of T1.

Theorem 2. Let x : Mn → P(R)n+1(1) be a closed two-sided hypersurface with
scalar curvature one. Then Ind(M) ≥ 1 and if Ind(M) = 1, M is the Clifford
hypersurfaces obtained by the projection of the Clifford torus of Theorem 1.

2. Preliminaries

In this section we will present some properties of the rth Newton tensors in M and
describe the Clifford hypersurfaces of P(R)n+1.

2.1. The rth Newton tensors

We introduce the rth Newton tensors, Pr : TpM → TpM , which are defined
inductively by

P0 = I,
Pr = SrI −APr−1, r > 1,

where Sr =
∑

i1<···<ir

ki1 . . . kir
is the rth symmetric function of the principal cur-

vatures k1, . . . , kn.
It is easy to see that each Pr commutes with A and if ei an eigenvector of A

associated to principal curvature ki, then

P1(ei) = µiei = (S1 − ki)ei.

In [Re], Reilly showed that the Pr’s satisfy the following

Proposition 2.1 ([Re], see also [BC] – Lemma 2.1). Let x : Mn → Nn+1 be an
isometric immersion between two Riemannian manifolds and let A be its second
fundamental form.The r’th Newton tensor Pr associated to A satisfies:

1. trace(Pr) = (n− r)Sr,
2. trace(APr) = (r + 1)Sr+1,
3. trace(A2Pr) = S1Sr+1 − (r + 2)Sr+2.

It follows from (3) that if S2 = 0, trace(A2P1) = −3S3.
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Remark 2.1. Observe that if S2 = 0, we have that

S2
1 = |A|2 + 2S2 ≥ k2

i , for all i.

Thus, 0 ≤ (S2
1 − k2

i ) = (S1 − ki)(S1 + ki), what implies that all eigenvalues of P1

are nonnegative if S1 ≥ 0, that is, P1 is a nonnegative operator. We also remark
that if S2 = 0 and P1 has one eigenvalue equal to zero, then

P1A ≡ 0. (1)

In fact, if µi0 = 0, then ki0 = S1. As S2
1 = |A|2, we get∑

i6=i0

k2
i0 = 0.

So ki = 0, for all i 6= i0, hence P1A ≡ 0.

Associated to each Newton tensor Pr, we define a second order differential
operator

Lr(f) = trace(PrHess f).

If Nn+1 has constant sectional curvature, it follows from Codazzi equation (see
Rosenberg [Ro], p. 225) that Lr is

Lr(f) = divM (Pr∇f).

Hence Lr is a self-adjoint operator and for any differentiable functions f and g on
Mn, ∫

M

fLrgdM =
∫

M

gLrfdM (2)

We observe that for r = 0, L0 is the Laplacian which is always an elliptic operator.
For r > 0 we have to add some extra condition in order to ensure that Lr is elliptic.
For hypersurfaces of Rn+1 with Sr = 0, Hounie and Leite, [HL], were able to give
a geometric condition that is equivalent to Lr being elliptic. In fact their proof
can be generalized to hypersurfaces of the sphere and we have that

Theorem 2.1 ([HL] – Proposition 1.5). Let M be a hypersurface in Rn+1 or Sn+1

with Sr = 0, 2 ≤ r < n. Then the operator Lr−1(f) = div(Pr−1∇f) is elliptic at
p ∈ M if and only if Sr+1(p) 6= 0.

Thus, for hypersurfaces with S2 = 0, L1 is an elliptic operator if and only if
S3 6= 0. Since L1(f) = divM (P1∇f), it follows that the ellipticity of L1 implies
that P1 is definite, hence then S1 6= 0.

Let a ∈ Rn+2 be a fixed vector. Let x : M → Sn+1(1) ⊂ Rn+2 be an isometric
immersion with S2 = 0 and let N be its unit normal vector. The functions f =
〈N, a〉 and g = 〈x, a〉 satisfy (see [BC], lemma 5.2)

L1(g) = −(n− 1)S1g (3)
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and

L1(f) = 3S3f. (4)

2.2. Clifford hypersurfaces of P(R)n+1

We are now going to describe some properties of the Clifford hypersurface in
P(R)n+1. A Clifford torus in Sn+1(1) is given by the product immersion of
M = Sn1(r1)×Sn2(r2), with n1 +n2 = n and r2

1 +r2
2 = 1, which is a closed hyper-

surface of Sn+1(1). It is easy to see that this immersion is invariant under the an-
tipodal map, hence it induces an immersion of M into P(R)n+1. This hypersurface
will be called Clifford hypersurface. If x : Sn1(r1)×Sn2(r2) → Sn+1(1) is a Clifford
torus, then the unit normal vector at a point p = (p1, p2) ∈ Sn1(r1) × Sn2(r2) is
given by

N =
(
−r2

r1
p1,

r1

r2
p2

)
.

Thus, the principal curvatures of M are
r2

r1
with multiplicity n1 and −r1

r2
with

multiplicity n2. It is easily checked that the scalar curvature of M is equal to one

(S2 = 0) if and only if
(

r2

r1

)2

= β satisfies the quadratic equation:

n1(n1 − 1)β2 − 2n1n2β + n2(n2 − 1) = 0. (5)

We will show in a while that only one of the torus given by (5) yields S1 > 0.
Notice that L1 is an elliptic operator and in order to calculate the index of M , we
first observe that in a principal basis, P1 is a diagonal matrix whose elements are{

(n1 − 1)
r2

r1
− n2

r1

r2

}
with multiplicity n1

and {
n1

r2

r1
− (n2 − 1)

r1

r2

}
with multiplicity n2.

Thus,

traceP1 = (n− 1)S1 = (n− 1)
(

n1
r2

r1
− n2

r1

r2

)
.

We will need the following relation:

‖
√

P1A‖2 = −3S3 = (n− 1)S1.

The first equality is a general fact that follows from Proposition 2.1, part 3, by
setting r = 1 and S2 = 0. The second equality is specific for Clifford tori with
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S2 = 0 and can be proved as follows. Write:

S1 = n1
r2

r1
− n2

r1

r2
,

S2 =
n1(n1 − 1)

2

(
r2

r1

)2

+
n2(n2 − 1)

2

(
r1

r2

)2

− n1n2,

S3 =
n1(n1 − 1)(n1 − 2)

6

(
r2

r1

)3

− n2(n2 − 1)(n2 − 2)
6

(
r1

r2

)3

+
n1n2(n2 − 1)

2

(
r1

r2

)2
r2

r1
− n1n2(n1 − 1)

2

(
r2

r1

)2
r1

r2
.

By introducing the condition S2 = 0 into S3, we obtain, after a long but straight-
forward computation, that

3S3 =
1
2

[
−2(n− 1)n1

r2

r1
+ 2(n− 1)n2

r1

r2

]
= −(n− 1)S1,

and this proves our claim. Thus the Jacobi operator reduces to

T1(f) = L1(f) + {‖
√

P1A‖2 + traceP1}f = L1(f) + 2(n− 1)S1f.

If ϕ = const., L1(ϕ) = 0 and

T1(ϕ) + 2(n− 1)S1ϕ = 0.

Thus the first eigenvalue of T1 is negative, hence Ind(M) is at least 1. Now let us
look at the second eigenvalue of T1. By using the expression of the eigenvalues of
P1 given above, we have that

L1(f) = div(P1∇f)

=
{

(n1 − 1)
r2

r1
− n2

r1

r2

}
∆n1(f) +

{
n1

r2

r1
− (n2 − 1)

r1

r2

}
∆n2(f),

where ∆ni is the Laplacian in Sni(ri), i = 1, 2. Thus the second eigenvalue of L1

is given by

λ2 = −
{

(n1 − 1)
r2

r1
− n2

r1

r2

}
ν∆n1

2 +
{

n1
r2

r1
− (n2 − 1)

r1

r2

}
ν∆n2

2 ,

where ν∆ni

2 is the first nonzero eigenvalue of ∆ni that corresponds to an eigen-
function which is invariant by the antipodal map (see [BGM] chap III, CII). Thus

λ2 = −
[{

(n1 − 1)
r2

r1
− n2

r1

r2

}
n1

r2
1

+
{

n1
r2

r1
− (n2 − 1)

r1

r2

}
n2

r2
2

]
=

−1
r3
1r

3
2

{
[n1(n1 − 1)− n1(n− 1)r2

1]r
2
2 + [n2(n− 1)r2

2 − n2(n2 − 1)]r2
1

}
.

(6)
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Observe that

S1 = n1
r2

r1
− n2

r1

r2
=

n1r
2
2 − n2r

2
1

r1r2
. (7)

The fact that S2 = 0 is equivalent to

n(n−1)r4
1−2n1(n−1)r2

1+n1(n1−1) = n(n−1)r4
2−2n2(n−1)r122+n2(n2−1) = 0.

(8)
By using (7) and (8), we have that

[n1(n1 − 1)− n1(n− 1)r2
1]r

2
2 = (n− 1)S1r

3
1r

3
2

and
[n2(n− 1)r2

2 − n2(n2 − 1)]r2
1 = (n− 1)S1r

3
1r

3
2.

Thus,
λ2 = −2(n− 1)S1.

Since the second eigenvalue of T1 is given by λ2 + 2(n − 1)S1, it is equal to zero.
This shows then that the Clifford hypersurfaces of P(R)n+1 have index one.

Remark. Observe that, by equation (7), the condition S1 ≥ 0 means that

n1r
2
2 − n2r

2
1 ≥ 0.

On the other hand, since β =
(

r2

r1

)2

, the above inequality implies that

n1β ≥ n2. (9)

The condition S2 = 0 is equivalent to

n1(n1 − 1)β2 − 2n1n2β + n2(n2 − 1) = 0, (10)

and one can easily see that only one solution of (10) is compatible with (9).

3. A gap theorem for hypersurfaces of the sphere with R = 1

In this section we prove a gap theorem for hypersurfaces of the sphere with R = 1.

Theorem 3.1 (Theorem 1 of the Introduction). Let x : Mn → Sn+1(1) be a
closed orientable hypersurface with scalar curvature R = 1 (equivalently, S2 = 0).
Assume that S1 does not change sign and choose the orientation such that S1 ≥ 0.
Assume further that

‖
√

P1A‖2 ≤ traceP1.

Then:
(i) ‖√P1A‖2 = traceP1.
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(ii) Mn is either a totally geodesic submanifold or Mn = Sn1(r1)× Sn2(r2) ⊂
Sn+1(1), where n1 + n2 = n, r2

1 + r2
2 = 1 and

(
r2

r1

)2

= β satisfies the quadratic

equation:
n1(n1 − 1)β2 − 2n1n2β + n2(n2 − 1) = 0.

Proof. Let us calculate 1
2L1‖A‖2. Since R = 1, S2 = n(n− 1)(R − 1) = 0, by the

Gauss’ formula. Thus ‖A‖2 = (nH)2 = S2
1 . Hence,

1
2
L1‖A‖2 =

1
2
L1S

2
1 = S1L1S1 + 〈P1∇S1,∇S1〉.

From [AdCC](Lemma 3.7), by using that 2S2 = n(n− 1)(R− 1) = 0, we have

L1S1 = |∇A|2 − |∇S1|2 + n‖A‖2 − S2
1 + 3S1S3.

Therefore,
L1S1 = |∇A|2 − |∇S1|2 + (n− 1)S2

1 + 3S1S3. (11)

Now, by using Proposition 2.1 (3), we obtain that

‖
√

P1A‖2 = traceP1A
2 = −3S3.

Then, equation (11) becomes

L1S1 = |∇A|2 − |∇S1|2 + (n− 1)S2
1 − S1‖

√
P1A‖2.

Thus,

1
2
L1‖A‖2 = S1L1S1 + 〈P1∇S1,∇S1〉

= S1(|∇A|2 − |∇S1|2 + (n− 1)S2
1 − 3S1‖

√
P1A‖2) + 〈P1∇S1,∇S1〉

= S1(|∇A|2 − |∇S1|2) + S2
1((n− 1)S1 − ‖

√
P1A‖2) + 〈P1∇S1,∇S1〉.

Since M is compact, we obtain

0 =
1
2

∫
M

L1‖A‖2dM

=
∫

M

{S1(|∇A|2 − |∇S1|2)+S2
1((n− 1)S1 − ‖

√
P1A‖2) + 〈P1∇S1,∇S1〉}dM.

(12)
We recall the following result (see [AdCC] – Lemma 4.1):

Lemma 3.1 ([AdCC]). Let M be an n-dimensional compact hypersurface in an
(n + 1)-dimensional unit sphere Sn+1. If the normalized scalar curvature R is
constant and R− 1 ≥ 0, then

|∇A|2 − |∇S1|2 ≥ 0. (13)
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Since S1 ≥ 0 and P1 is positive, we have that

〈P1∇S1,∇S1〉 = ‖
√

P1∇S1‖2 ≥ 0. (14)

Our hypothesis and inequalities (13) and (14) implies that the right-hand side of
(12) is non-negative. Thus we conclude that

S1(|∇A|2 − |∇S1|2) + S2
1((n− 1)S1 − ‖

√
P1A‖2) + 〈P1∇S1,∇S1〉 = 0. (15)

Since each term in above equation is non-negative, we have

S1((n− 1)S1 − ‖
√

P1A‖2) = 0.

Observe that when S1 = 0, ‖A‖2 = 0 and ‖√P1A‖2 = 0. Since by Lemma 2.1,
traceP1 = (n− 1)S1, the first part of the theorem is proved.

Now, let us assume that ‖√P1A(p)‖2 = (n−1)S1(p), for all p ∈ M . If S1(p) = 0
for all p ∈ M , since S2 = 0, ‖A‖2 = 0 and M is totally geodesic. Let us suppose
that there exists a point p0 in M such that S1(p0) > 0. So the set A ⊂ M
where S1(p) > 0 is an open and non-void set of M . We claim that P1 is positive
definite in A. In fact, if P1 has one eigenvalue equal to zero, then by Remark 2.1,
P1A ≡ 0 and since ‖√P1A(p)‖2 = (n − 1)S1(p), we conclude that S1 = 0, which
is a contradiction. On each connected component of A, we have that

〈P1∇S1,∇S1〉 = 0

and
|∇A|2 − |∇S1|2 = 0.

Since P1 is positive definite, the first equation implies that ∇S1 = 0. This implies
that |∇A|2 = 0, by the second equation, i.e., the second fundamental form of M is
covariant constant. It follows that the component A is a piece of a Clifford torus,
by using the following theorem of H. B. Lawson ([L] – Theorem 4, see also [CdCK]
Lemma 3).

Theorem 3.2 [L]. Let Mn be an isometrically immersed hypersurface of Sn+1,
over which the second fundamental form is covariant constant. Then, up to isome-
tries of Sn+1, Mn is an open set of Sk(r)× Sn−k(

√
1− r2).

Finally, since along the boundary of A, ‖A‖2 = S2
1 = 0, we conclude that

∂A = ∅ and M is a Clifford torus. ¤

4. Characterization of index one closed hypersurfaces with R = 1
in the real projective space

In this section we will assume that the operator L1 is elliptic and will describe the
index of closed hypersurfaces in the real projective space P(R)n+1. In order to do
that we are going to use the covering map of Sn+1 onto P(R)n+1. The following
result will be needed.
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Lemma 4.1. Let Mn → Sn+1 is a closed orientable hypersurface with R = 1.
Then the index of the quadratic form

I(f, f) = −
∫

M

fT1fdM

= −
∫

M

fL1f + ((n− 1)S1 − 3S3)f2dM

is greater than one.

Proof. First of all observe that for constant functions f = const., we have that

I(f, f) = −
∫

M

fL1f + ((n− 1)S1 − 3S3)f2dM

= −
∫

M

((n− 1)S1 − 3S3)f2dM < 0.

Thus ind(M) ≥ 1.
Suppose that this index is equal to one. Let {e1, . . . , en+2} be an orthonormal

basis of Rn+2. If we write the normal vector field of the immersion as N =
n+2∑
i=1

niei,

we obtain that
L1(ni) = 3S3ni, for all i = 1, . . . , n + 2.

Thus

I(ni, ni) = −
∫

M

((n− 1)S1)n2
i dM ≤ 0.

Since the functions ni are linearly independent, the index one hypothesis implies
that (n − 1) of the n′is have to be null and since |N | = 1, after reordering if
necessary, we have n1 = 1 and ni = 0 for i = 2, . . . , n+2 . Thus the normal vector
field N = e1. This implies that Mn is totally geodesic. On the other hand, since
L1 is elliptic, we have that S1 > 0, and this contradicts the fact that Mn is totally
geodesic. We conclude then that ind(M) > 1.

The main result of this section is the following characterization of index one
closed hypersurfaces of P(R)n+1.

Theorem 4.1 (Theorem 2 of the introduction). Let x : Mn → P(R)n+1(1) be a
closed two-sided hypersurface with scalar curvature one. Then Ind(M) ≥ 1 and
if Ind(M) = 1, M is the Clifford hypersurfaces obtained by the projection of the
Clifford torus of Theorem 3.1.

Proof. The proof is inspired by the proof of the minimal case in [dCRR]. Observe
that the index one hypothesis implies that M must be connected. Since, by lemma
4.1, Sn+1 does not have an index one hypersurface with R = 1, x cannot lift to an
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immersion of M into Sn+1. Thus we obtain that there exists a connected twofold
covering M̃ → M and an isometric immersion x̃ : M̃ → Sn+1 which is locally
congruent to the immersion of M in P(R)n+1. An object in M̃ that corresponds
to an object in M will be denoted by the same notation as in M . If we denote by
π : M̃ → M̃ the isometric involution induced by the covering, then x̃ must satisfy

x̃ ◦ π = −x̃

and, since x̃(M) is two-sided, M̃ is orientable, and

N ◦ π = −N,

where N is the unit normal vector field of the immersion. We have that the
immersion x̃ is such that R = 1 and S3 6= 0. By ellipticity we can choose the
orientation of M̃ in such way that S1 > 0.

Let λ1 be the first eigenvalue of the operator

T1(ϕ) = L1(ϕ) + ((n− 1)S1 + 3S3)ϕ.

We know that its first eigenspace is one-dimensional and generated by a function
ϕ that does not change sign on M̃ . Now, let ϕ1 = ϕ ◦ π. Since π is an isometry,
we obtain that T1(ϕ1) = λ1ϕ1. This implies that ϕ = ±ϕ ◦ π. Observe that if
ϕ = −ϕ ◦ π, ϕ has to change sign on M̃ . Thus ϕ = ϕ ◦ π.

From the fact that Ind(M) = 1, we obtain that any function u : M̃ → R such

that u ◦ π = u and
∫

M̃

uϕdM̃ = 0 satisfies

I(u, u) = −
∫

M̃

{uL1u + ((n− 1)S1 + 3S3)u2}dM̃ ≥ 0.

Moreover, if such a function u satisfies I(u, u) = 0, then u is a Jacobi function,
that is,

L1u + ((n− 1)S1 + 3S3)u = 0.

Given a, b ∈ Rn+2, let φa,b : M̃ → Rn+2 be defined by

φa,b = 〈x̃, a〉x̃ + 〈N, a〉N + 〈x̃, b〉N.

By doing the calculation coordinatewise and using equations (3) and (4) we have
that

L1(x̃) = −(n− 1)S1x̃

and
L1(N) = 3S3N.

Thus,
L1(〈x̃, a〉x̃) = −2(n− 1)S1〈x̃, a〉x̃− P1A(at),

L1(〈N, a〉N) = 6S3〈N, a〉N − P1A
2(at)

and
L1(〈x̃, b〉N) = [−(n− 1)S1 + 3S3]〈x̃, b〉N − P1A(bt),
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where at, bt are the tangent projection of a and b. This implies that

T1(φa,b) = −[(n− 1)S1 + 3S3][〈x̃, a〉x̃− 〈N, a〉N ] + Xa,b, (16)

where Xa,b is a tangent vector field. Then,

−
∫

M̃

〈T1(φa,b), φa,b〉dM̃

=
∫

M̃

[(n− 1)S1 + 3S3][〈x̃, a〉2 − 〈N, a〉2 − 〈x̃, b〉〈N, a〉]dM̃.

Now, by (2), we have ∫
M̃

[(n− 1)S1 + 3S3]〈x̃, b〉〈N, a〉dM̃

= −
∫

M̃

{〈N, a〉L1(〈x̃, b〉)− 〈x̃, b〉L1(〈N, a〉)}dM̃ = 0.

Thus,

−
∫

M̃

〈T1(φa,b), φa,b〉dM̃ =
∫

M̃

[(n− 1)S1 + 3S3][〈x̃, a〉2 − 〈N, a〉2]dM̃. (17)

Observe that the above expression does not depend on b. We are going to show

that for any a ∈ Rn+2, it is possible to choose b ∈ Rn+2 such that
∫

M̃

ϕφa,bdM̃ = 0.

To do this, consider a linear map F : Rn+2 → Rn+2 given by

F (b) =
∫

M̃

ϕ〈x̃, b〉NdM̃.

We claim that F is injective (thus a linear isomorphism). In fact, if b 6= 0 is
such that F (b) = 0, one has that (17), with φ = φ0,b = 〈x̃, b〉N , implies that

I(φ, φ) = 0.

Then, T1(φ) = 0. On the other hand, for a = 0,

T1(φ) = X0,b = −P1A(bt) = 0, (18)

where bt is the tangent projection of b along M̃ . Since P1 is positive definite, (18)
says that A(bt) = 0 on M̃ , which is the same that 〈N, b〉 is constant along M̃ . As
we have that N ◦ π = −N , we get that 〈N, b〉 = 0. This implies that the function
u = 〈x̃, b〉 satisfies that Hessu(X,Y ) = 〈X,Y 〉u. We need the following result of
M. Obata.

Theorem 4.2 ([O] – Theorem A). In order that a complete Riemannian man-
ifold of dimension n ≥ 2 admit a non-constant function φ with Hessφ(X,Y ) =
c2φ〈X,Y 〉, it is necessary and sufficient that the manifold be isometric to a sphere
Sn(c) of radius 1

c in the (n + 1) Euclidean space.



561

Thus, if u is non-constant, then M̃ is isometric to a unit sphere and since M̃
is isometrically immersed in Sn+1(1), this implies that M̃ is totally geodesic. On
the other hand, if u is constant, M̃ is totally umbilic. Since S2 = 0, M̃ is again
totally geodesic. In both cases, S2

1 = |A|2 = 0, which is a contradiction to the fact
that S1 > 0. Thus the claim is proved.

Take an orthonormal basis {a1, . . . , an+2} of Rn+2. By using the isomor-
phism F , for any i = 1, . . . , n + 2, it is possible to find bi ∈ Rn+2 such that∫

M̃

ϕφai,bi
dM̃ = 0. Thus each coordinate φij of φai,bi

is such that
∫

M̃

ϕφijdM̃ = 0.

Then, I(φij , φij) ≥ 0. From equation (17), we have

0 ≤
n+2∑
i=1

∫
M̃

[(n− 1)S1 + 3S3][〈x̃, ai〉2 − 〈N, ai〉2]dM̃

=
n+2∑
i=1

∫
M̃

[(n− 1)S1 + 3S3](|x̃|2 − |N |2)dM̃ = 0.

This implies that T1(φai,bi
) = 0, i = 1, . . . , n + 2. Hence, 〈T1(φai,bi

), x̃〉 = 0 and,
by equation (16), we obtain that

[(n− 1)S1 + 3S3]〈x̃, ai〉 = 0, i = 1, . . . , n + 2.

But this is only possible if (n−1)S1+3S3 = 0. Since ‖√P1A‖2 = −3S3 = (n−1)S1,
theorem (3) implies that M̃ is a Clifford torus. ¤
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(1980), 57–71.

[O] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere,
J. Math. Soc. Japan 14, no. 3 (1962), 333–340.



562

[Re] R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces
in space forms, J. Diff. Geom. 8 (1973), 465–477.

[Ro] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sc. Math., 2a

série 117 (1993), 211–239.
[S] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968),

62–105.

Hilário Alencar
Universidade Federal de Alagoas
Departamento de Matemática
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