UPPER BOUNDS FOR THE FIRST EIGENVALUE OF THE OPERATOR L_{r} AND SOME APPLICATIONS

HILÁRIO ALENCAR, MANFREDO DO CARMO, AND FERNANDO MARQUES

Abstract

We obtain upper bounds for the first eigenvalue of the linearized operator L_{r} of the r-mean curvature of a compact manifold immersed in a space of constant curvature δ. By the same method, we obtain an upper bound for the first eigenvalue of the stability operator associated to L_{r} when $\delta<0$.

1. Introduction

Let M^{n} be a compact, connected, orientable Riemannian manifold, isometrically immersed in a simply connected space form $\bar{M}^{n+1}(\delta)$, with constant sectional curvature δ. We obtain upper bounds for the first eigenvalue of some elliptic operators defined on M (see below). In 1988, Heintze [H] proved that

$$
\lambda_{1}^{\Delta} \leq n \delta+n \max H_{1}^{2}
$$

for manifolds immersed in a hyperbolic space $(\delta<0)$ and that

$$
\lambda_{1}^{\Delta} \leq n \delta+\frac{n}{\operatorname{vol} M} \int_{M} H_{1}^{2}
$$

for manifolds immersed in a sphere $(\delta>0)$, contained in a convex ball of radius $r \leq \frac{\pi}{4 \sqrt{\delta}}$ (if $\delta>0$). Here λ_{1}^{Δ} denotes the first eigenvalue of the Laplacian on M and H_{1} denotes the mean curvature. (In fact, Heintze considered as ambient spaces Riemannian manifolds with curvature bounded above by б.) The latter inequality was obtained by Reilly $[\mathrm{R}]$ in 1977 for manifolds immersed in Euclidean space $(\delta=0)$, and generalized to arbitrary δ by El Soufi and Ilias [ESI] in 1992. In all of these estimates, equality holds precisely when M is a geodesic sphere of \bar{M}. Both El Soufi and Ilias [ESI] and Heintze $[\mathrm{H}]$ applied these bounds to obtain the stability theorems of Barbosa and do Carmo [B-dC] for immersions in \mathbb{R}^{n+1}, and of Barbosa, do Carmo,

[^0]and Eschenburg [B-dC-E] for immersions in S^{n+1} and H^{n+1}. (The restriction $r \leq \frac{\pi}{4 \sqrt{\delta}}$ in the case of S^{n+1} in $[\mathrm{H}]$ is stronger than that in [B-dC-E].)

We first introduce some notation. Consider the elementary symmetric functions $S_{r}(r=1, \ldots, n)$ of the principal curvatures and the r-mean curvatures

$$
H_{r}=\frac{S_{r}}{\binom{n}{r}} .
$$

Let A be the second fundamental form associated to a globally defined normal unit vector field N. We define an operator L_{r} by

$$
L_{r} f=\operatorname{div}\left(P_{r} \nabla_{M} f\right)
$$

where $\nabla_{M} f$ stands for the gradient of f in M and P_{r} denotes the classical Newton transformation defined inductively by

$$
\begin{aligned}
& P_{0}=I \\
& P_{r}=S_{r} I-A P_{r-1}
\end{aligned}
$$

Each P_{r} is a self-adjoint operator whose trace is $c(r) H_{r}$, where $c(r)=(n-$ $r)\binom{n}{r}$ (see [B-C, Lemma 2.1]). Note that $L_{0}=\Delta$.

In general, the operator L_{r} is not elliptic and some conditions are necessary to ensure the presence of ellipticity. However, in the theorems below, the hypotheses will guarantee that L_{r} is elliptic; see, for instance, the remarks made at the beginning of the proofs of Theorems 1.1 and 1.2. Thus we can consider the first eigenvalue $\lambda_{1}^{L_{r}}$ of L_{r}. This is the object we study here.

Assume that S_{r+1} is constant. Following [B-C] we say that the immersion is r-stable if $I_{r}(f) \geq 0$ for any $f: M \rightarrow \mathbb{R}$ satisfying $\int_{M} f d M=0$, where

$$
I_{r}(f)=-\int_{M} f\left\{L_{r}(f)+\left[\frac{n}{r+1} c(r) H_{1} H_{r+1}-c(r+1) H_{r+2}+\delta c(r) H_{r}\right] f\right\} .
$$

In 1993, Alencar, do Carmo, and Rosenberg [A-dC-R, Theorem 1.1] proved that if H_{r+1} is positive (but not necessarily constant) on M, then

$$
\lambda_{1}^{L_{r}} \int_{M} H_{r} \leq c(r) \int_{M} H_{r+1}^{2},
$$

for manifolds immersed in Euclidean space, and equality holds if and only if M is a sphere. They applied this result to obtain the theorem of Barbosa and do Carmo $[\mathrm{B}-\mathrm{dC}]$ and a theorem of Alencar, do Carmo, and Colares [A-dC-C]. They also proved that an immersion of a hypersurface in \mathbb{R}^{n+1} wth H_{r+1} constant is r-stable if and only if M is a sphere. In 1995, Grosjean [G1] obtained sharp integral bounds for $\lambda_{1}^{L_{r}}$ of immersions in any space form $\bar{M}(\delta)$, under the additional hypothesis of convexity of the immersion.

In this paper, inspired by Heintze's work [H], we obtain sharp upper bounds for $\lambda_{1}^{L_{r}}$ without the convexity hypothesis, in both the hyperbolic and spherical spaces. We prove the following theorems:

THEOREM 1.1. Let M^{n} be a compact manifold isometrically immersed in $\bar{M}^{n+1}(\delta)$, with $\delta<0$. If $H_{r+1}>0$ on M, then

$$
\lambda_{1}^{L_{r}} \leq \delta c(r) \min H_{r}+c(r) \frac{\max H_{r+1}^{2}}{\min H_{r}}
$$

and equality holds if and only if M is a geodesic sphere.
Theorem 1.2. Let M^{n} be a compact manifold isometrically immersed in $\bar{M}^{n+1}(\delta)$, with $\delta>0$, and suppose M is contained in a convex ball of radius $\frac{\pi}{4 \sqrt{\delta}}$. If $H_{r+1}>0$ on M, then

$$
\lambda_{1}^{L_{r}} \leq\left(\delta c(r)+c(r) \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}\right) \frac{\int H_{r}}{\operatorname{vol} M}
$$

and equality holds if and only if M is a geodesic sphere.
Furthermore, using the same techniques, we obtain an upper bound for the first eigenvalue of the operator $L_{r}-q$, where

$$
q=c(r+1) H_{r+2}-\frac{n c(r)}{r+1} H_{1} H_{r+1}-\delta c(r) H_{r}
$$

From this the r-stability theorem for manifolds immersed in a hyperbolic space, proved in 1997 by Barbosa and Colares [B-C], will follow. (In fact, in [B-C] the r-stability theorem was proved for any manifold $\bar{M}^{n+1}(\delta)$.)

To state this theorem, we need some notation. We denote by s_{δ} the solution of the differential equation $y^{\prime \prime}+\delta y=0$, with the initial conditions $y(0)=$ $0, y^{\prime}(0)=1$. Set $c_{\delta}=s_{\delta}^{\prime}$; then $c_{\delta}^{\prime}=-\delta s_{\delta}$ and $c_{\delta}^{2}+\delta s_{\delta}^{2}=1$. We have $s_{\delta}(t)=\frac{1}{\sqrt{-\delta}} \sinh (\sqrt{-\delta} t)$ and $c_{\delta}(t)=\cosh (\sqrt{-\delta} t)$ in the case $\delta<0$, and $s_{\delta}(t)=\frac{1}{\sqrt{\delta}} \sin (\sqrt{\delta} t), c_{\delta}(t)=\cos (\sqrt{\delta} t)$ in the case $\delta>0$. Note that if $\delta=0$, $s_{\delta}(t)=t$.

We will prove the following result:
Theorem 1.3. If $\delta<0$ and $H_{r+1}>0$, there exists a point $p_{0} \in \bar{M}$ such that, if $d=d\left(p_{0}, \cdot\right)$ denotes the distance function from p_{0} in \bar{M}, then

$$
\lambda_{1}\left(L_{r}-q\right) \leq c(r) \frac{\int_{M}\left(\frac{\max H_{r+1}^{2}}{\min H_{r}}-H_{1} H_{r+1}\right) s_{\delta}^{2}(d)}{\int_{M} s_{\delta}^{2}(d)}
$$

and equality holds precisely when M is a geodesic sphere.
As a consequence, we obtain:
Corollary 1.4 ([B-C]). The only r-stable compact immersed hypersurfaces in a hyperbolic space, with constant $H_{r+1}>0$, are the geodesic spheres.

Remark 1.5. After writing this paper, we received a preprint of J.F. Grosjean (see [G2]) who obtained, independently, the results presented here.

We want to thank the referee for useful suggestions.

2. Preliminaries

Throughout this paper, we use the notations defined in the Introduction. Let M^{n} and $\bar{M}^{n+1}(\delta)$ be as before, let $p_{0} \in \bar{M}$, and let $d=d\left(p_{0}, \cdot\right)$ be the distance function from p_{0} in \bar{M}. Let $x_{i}(i=1, \ldots, n+1)$ be the normal coordinates centered in p_{0}, with respect to some orthonormal basis in $T_{p_{0}} \bar{M}$. We denote by ∇ and ∇_{M} the gradients taken in \bar{M} and M, respectively.

Lemma 2.1. Suppose $x \in \bar{M}$. Assume $x \in B\left(p_{0}, \frac{\pi}{2 \sqrt{\delta}}\right)$ in the case $\delta>0$. If $u, v \in T_{x} \bar{M}$ and v is orthogonal to ∇d, then

$$
\frac{s_{\delta}^{2}(d)}{d^{2}} \sum_{i=1}^{n+1}\left(\left\langle\nabla x_{i}, u\right\rangle\left\langle\nabla x_{i}, v\right\rangle\right)=\langle u, v\rangle .
$$

Proof. The map

$$
L_{\tilde{x}}=\left(d \exp _{p_{0}}\right)_{\tilde{x}}: T_{p_{0}} \bar{M} \rightarrow T_{x} \bar{M},
$$

where $\exp _{p_{0}}(\tilde{x})=x$, is a linear isomorphism. Using $\left\langle\nabla x_{i}, u\right\rangle=\left(L_{\tilde{x}}^{-1} u\right)\left(x_{i}\right)$, we obtain

$$
\frac{s_{\delta}^{2}(d)}{d^{2}} \sum_{i=1}^{n+1}\left(\left\langle\nabla x_{i}, u\right\rangle\left\langle\nabla x_{i}, v\right\rangle\right)=\frac{s_{\delta}^{2}(d)}{d^{2}}\left\langle L_{\tilde{x}}^{-1}(u), L_{\tilde{x}}^{-1}(v)\right\rangle .
$$

Since $L_{\tilde{x}}$ is a radial isometry, $L_{\tilde{x}}^{-1}(v)$ is tangent to the sphere of radius $|\tilde{x}|$ in $T_{p_{0}} \bar{M}$. Further, $L_{\tilde{x}}^{-1}(u)=\tilde{w}+\tilde{r}$, where \tilde{w} is tangent and \tilde{r} is orthogonal to this sphere in $T_{p_{0}} \bar{M}$. Hence, $\left\langle L_{\tilde{x}}^{-1}(u), L_{\tilde{x}}^{-1}(v)\right\rangle=\langle\tilde{w}, \tilde{v}\rangle$, where $\tilde{v}=L_{\tilde{x}}^{-1}(v)$.

Let $\gamma:[0, d] \rightarrow \bar{M}$ be the normalized geodesic with

$$
\gamma(0)=p, \quad \gamma(d)=x, \quad \gamma^{\prime}(0)=\frac{\tilde{x}}{|\tilde{x}|},
$$

where $|\tilde{x}|=d$. Let $J_{v}(t), J_{w}(t)$ be Jacobi fields along γ such that

$$
J_{v}(0)=J_{w}(0)=0 \quad J_{v}^{\prime}(0)=\frac{\tilde{v}}{|\tilde{v}|}, \quad J_{w}^{\prime}(0)=\frac{\tilde{w}}{|\tilde{w}|} .
$$

Since \bar{M} has constant sectional curvature,

$$
\begin{equation*}
\left\langle J_{v}(d), J_{w}(d)\right\rangle=\frac{s_{\delta}^{2}(d)}{|\tilde{v}||\tilde{w}|}\langle\tilde{v}, \tilde{w}\rangle . \tag{1}
\end{equation*}
$$

Recall also that

Hence, $\left\langle J_{v}(d), J_{w}(d)\right\rangle=\frac{d^{2}}{|\tilde{v}||\tilde{w}|}\langle v, w\rangle$, where $w=L_{\tilde{x}}(\tilde{w})$, and using (1), we obtain $\langle v, w\rangle=\frac{s_{s}^{2}}{d^{2}}\langle\tilde{v}, \tilde{w}\rangle$. Thus

$$
\frac{s_{\delta}^{2}}{d^{2}} \sum_{i=1}^{n+1}\left\langle\nabla x_{i}, u\right\rangle\left\langle\nabla x_{i}, v\right\rangle=\frac{s_{\delta}^{2}}{d^{2}}\langle\tilde{v}, \tilde{w}\rangle=\langle v, w\rangle=\langle v, u\rangle,
$$

which concludes the proof.
Define the position vector X of M^{n} in $\bar{M}^{n+1}(\delta)$ with respect to p_{0} by $X=s_{\delta}(d) \nabla d$. Denote by X^{T} the component of X tangent to M; i.e., $X^{T}=$ $s_{\delta}(d) \nabla_{M} d$. Observe that

$$
\nabla_{M} c_{\delta}=-\delta X^{T}
$$

Lemma 2.2. With the above notation,

$$
\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle+\delta\left\langle P_{r} X^{T}, X^{T}\right\rangle=c(r) H_{r}
$$

Proof. Using the fact that P_{r} is self-adjoint, we obtain

$$
\begin{aligned}
\left\langle P_{r} \nabla_{M} \frac{s_{\delta}}{d} x_{i}, \nabla_{M} \frac{s_{\delta}}{d} x_{i}\right\rangle=\frac{x_{i}^{2}}{d^{2}}\left(c_{\delta}\right. & \left.-\frac{s_{\delta}}{d}\right)^{2}\left\langle P_{r} \nabla_{M} d, \nabla_{M} d\right\rangle \\
& +2 \frac{x_{i} s_{\delta}}{d^{2}}\left(c_{\delta}-\frac{s_{\delta}}{d}\right)\left\langle P_{r} \nabla_{M} d, \nabla_{M} x_{i}\right\rangle \\
& +\frac{s_{\delta}^{2}}{d^{2}}\left\langle P_{r} \nabla_{M} x_{i}, \nabla_{M} x_{i}\right\rangle
\end{aligned}
$$

Since $\sum_{i} x_{i} \nabla x_{i}=d \nabla d$ and

$$
\left\langle P_{r} \nabla_{M} d, \nabla_{M} x_{i}\right\rangle=\left\langle P_{r} \nabla_{M} d, \nabla x_{i}\right\rangle,
$$

because $P_{r} \nabla_{M} d$ is tangent to M, we have

$$
\begin{aligned}
\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M} \frac{s_{\delta}}{d}\right. & \left.x_{i}, \nabla_{M} \frac{s_{\delta}}{d} x_{i}\right\rangle \\
& =\left(c_{\delta}^{2}-\frac{s_{\delta}^{2}}{d^{2}}\right) \cdot\left\langle P_{r} \nabla_{M} d, \nabla_{M} d\right\rangle+\frac{s_{\delta}^{2}}{d^{2}} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M} x_{i}, \nabla_{M} x_{i}\right\rangle
\end{aligned}
$$

Further

$$
\delta\left\langle P_{r} X^{T}, X^{T}\right\rangle=\delta s_{\delta}^{2}\left\langle P_{r} \nabla_{M} d, \nabla_{M} d\right\rangle
$$

Thus

$$
\begin{aligned}
& \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M} \frac{s_{\delta}}{d} x_{i}, \nabla_{M} \frac{s_{\delta}}{d} x_{i}\right\rangle+\delta\left\langle P_{r} X^{T}, X^{T}\right\rangle \\
& \quad=\frac{s_{\delta}^{2}}{d^{2}} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M} x_{i}, \nabla_{M} x_{i}\right\rangle+\left(1-\frac{s_{\delta}^{2}}{d^{2}}\right)\left\langle P_{r} \nabla_{M} d, \nabla_{M} d\right\rangle .
\end{aligned}
$$

Now let $e_{1}, \ldots, e_{n} \in T_{p} M$ be an orthonormal basis such that e_{n} lies in the direction of $\nabla_{M} d$ (if $\nabla_{M} d \neq 0$). Then there are numbers λ and μ satisfying $e_{n}=\lambda \nabla d+\mu e_{n}^{*}$, where e_{n}^{*} is a unit vector orthogonal to ∇d. From this we easily obtain $\nabla_{M} d=\lambda e_{n}$ and $\left(e_{n}^{*}\right)^{T}=\mu e_{n}$.

A simple calculation gives

$$
\begin{aligned}
\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle+\delta\left\langle P_{r} X^{T},\right. & \left.X^{T}\right\rangle \\
=\frac{s_{\delta}^{2}}{d^{2}} \sum_{j=1}^{n-1} \sum_{i=1}^{n+1}\left(\left\langle\nabla x_{i}, P_{r} e_{j}\right\rangle\left\langle\nabla x_{i}, e_{j}\right\rangle\right)+\frac{s_{\delta}^{2}}{d^{2}} \sum_{i=1}^{n+1} & \left\langle P_{r} \nabla_{M} x_{i}, e_{n}\right\rangle\left\langle\nabla_{M} x_{i}, e_{n}\right\rangle \\
& +\left(1-\frac{s_{\delta}^{2}}{d^{2}}\right) \lambda^{2}\left\langle P_{r} e_{n}, e_{n}\right\rangle
\end{aligned}
$$

Since e_{j} is orthogonal to ∇d for all $j=1, \ldots, n-1$, we can apply Lemma 2.1 and obtain
(2) $\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle+\delta\left\langle P_{r} X^{T}, X^{T}\right\rangle$

$$
\begin{aligned}
=\sum_{j=1}^{n-1}\left\langle P_{r} e_{j}, e_{j}\right\rangle+\frac{s_{\delta}^{2}}{d^{2}} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M} x_{i},\right. & \left.e_{n}\right\rangle\left\langle\nabla_{M} x_{i}, e_{n}\right\rangle \\
& +\left(1-\frac{s_{\delta}^{2}}{d^{2}}\right) \lambda^{2}\left\langle P_{r} e_{n}, e_{n}\right\rangle
\end{aligned}
$$

Observing that, for any $x \in \bar{M}$ and any $u \in T_{x} \bar{M}$,

$$
\sum_{i}^{n+1}\left\langle\nabla x_{i}, u\right\rangle\left\langle\nabla x_{i}, \nabla d\right\rangle=\langle u, \nabla d\rangle
$$

we obtain, after some manipulation,

$$
\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M} x_{i}, e_{n}\right\rangle\left\langle\nabla_{M} x_{i}, e_{n}\right\rangle=\lambda\left\langle P_{r} e_{n}, \nabla d\right\rangle+\sum_{i=1}^{n+1}\left\langle\nabla x_{i}, P_{r} e_{n}\right\rangle\left\langle\nabla x_{i}, \mu e_{n}^{*}\right\rangle
$$

Applying Lemma 2.1 again, because e_{n}^{*} is orthogonal to ∇d, the right-hand side of the last equation is equal to

$$
\lambda\left\langle P_{r} e_{n}, \nabla d\right\rangle+\frac{d^{2}}{s_{\delta}^{2}(d)} \mu\left\langle P_{r} e_{n}, e_{n}^{*}\right\rangle .
$$

Substituting this in (2), we obtain

$$
\begin{aligned}
\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d}\right.\right. & \left.\left.x_{i}\right)\right\rangle+\delta\left\langle P_{r} X^{T}, X^{T}\right\rangle \\
& =\sum_{j=1}^{n}\left\langle P_{r} e_{j}, e_{j}\right\rangle=\operatorname{trace}\left(P_{r}\right)=c(r) H_{r}
\end{aligned}
$$

Lemma 2.3. If $H_{r+1}>0$ and $c_{\delta} \geq 0$, then

$$
\frac{\int_{M} c_{\delta}}{\int_{M} s_{\delta}} \leq \frac{\max H_{r+1}}{\min H_{r}}
$$

Proof. Recall that if $H_{r+1}>0$, then $H_{j}>0$, where $1 \leq j \leq r$ (see [B-C, Proposition 3.2]). Recall also Minkowski's formula (see [A-C])

$$
\int_{M}\left[H_{r} c_{\delta}+H_{r+1}\langle X, N\rangle\right]=0
$$

Then, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\int_{M} H_{r} c_{\delta} & =-\int_{M} H_{r+1}\langle X, N\rangle \leq \int_{M} H_{r+1}|X| \\
& =\int_{M} H_{r+1} s_{\delta} \leq\left(\max H_{r+1}\right) \int_{M} s_{\delta}
\end{aligned}
$$

Since $c_{\delta} \geq 0$, we also have $\left(\min H_{r}\right) \int_{M} c_{\delta} \leq \int_{M} H_{r} c_{\delta}$. From these inequalities we obtain

$$
\left(\min H_{r}\right) \int_{M} c_{\delta} \leq\left(\max H_{r+1}\right) \int_{M} s_{\delta}
$$

This concludes the proof.

3. Proofs of Theorems 1.1, 1.2, 1.3 and Corollary 1.4

We are now in a position to prove the upper bounds for the first eigenvalue of L_{r}. Our proofs use the Rayleigh quotient, applied with suitable test functions.

In all proofs, $p_{0} \in \bar{M}$ will be a point such that

$$
\int_{M} \frac{s_{\delta}(d)}{d} x_{i}=0 \quad(i=1, \ldots, n+1)
$$

where $d=d\left(p_{0}, \cdot\right)$. The existence of such a point, assuming that M lies in a convex ball of \bar{M}, can be verified by a standard argument. Namely, if M lies in a convex ball B, then

$$
Y_{q}=\int_{M} \frac{s_{\delta}(d(q, p))}{d(q, p)} \exp _{q}^{-1}(p) d p \in T_{q} \bar{M}
$$

defines a vector field in a neighborhood of B which, at the boundary, points towards the interior of B. Thus, Y has a zero in B, and if we take p_{0} as this zero, then p_{0} has the required property. Note that if B has radius less than $\frac{\pi}{4 \sqrt{\delta}}$, then M lies in a ball of radius $<\frac{\pi}{2 \sqrt{\delta}}$ around p_{0}. As a consequence, $c_{\delta} \geq 0$.

Proof of Theorem 1.1. Since $H_{r+1}>0$ and M is compact, L_{r} is elliptic (see [B-C, Proposition 3.2]).

Using the Rayleigh quotient with the test functions $\frac{s_{\delta}(d)}{d} x_{i}$, we obtain

$$
\begin{align*}
\lambda_{1}^{L_{r}} \int_{M} s_{\delta}^{2} & =\lambda_{1}^{L_{r}} \int_{M} \sum_{i=1}^{n+1}\left(\frac{s_{\delta}}{d} x_{i}\right)^{2} \tag{3}\\
& \leq \int_{M} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle \\
& =c(r) \int_{M} H_{r}-\delta \int_{M}\left\langle P_{r} X^{T}, X^{T}\right\rangle
\end{align*}
$$

where the last equality follows from Lemma 2.2.
From Stokes' theorem it follows that

$$
\int_{M} f L_{r} g+\left\langle P_{r} \nabla_{M} f, \nabla_{M} g\right\rangle=0
$$

Applying this with $f=g=c_{\delta}$ and using the relation $\nabla_{M} c_{\delta}=-\delta X^{T}$, we obtain

$$
\delta \int_{M}\left\langle P_{r} X^{T}, X^{T}\right\rangle=-\frac{1}{\delta} \int_{M} c_{\delta} L_{r}\left(c_{\delta}\right)
$$

Hence,

$$
\int_{M} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle=c(r) \int_{M} H_{r}+\frac{1}{\delta} \int_{M} c_{\delta} L_{r}\left(c_{\delta}\right)
$$

It is known that (see [A-C, Lemma 1])

$$
L_{r}\left(c_{\delta}\right)=-\delta\left[c(r) H_{r} c_{\delta}+c(r)\langle X, N\rangle H_{r+1}\right]
$$

From this and the inequality

$$
-\langle X, N\rangle \leq|X|=s_{\delta}
$$

we obtain

$$
\begin{aligned}
\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle & \leq \delta c(r) \int_{M} s_{\delta}^{2} H_{r}-c(r) \int_{M} c_{\delta}\langle X, N\rangle H_{r+1} \\
& \leq \delta c(r) \int_{M} s_{\delta}^{2} H_{r}+c(r) \int_{M} c_{\delta} s_{\delta} H_{r+1} \\
& \leq \delta c(r) \int_{M} s_{\delta}^{2} H_{r}+c(r) \max H_{r+1} \int_{M} c_{\delta} s_{\delta} .
\end{aligned}
$$

If $\delta \leq 0$, it is also known that (see Lemma 2.8 in $[\mathrm{H}]$)

$$
\int_{M} s_{\delta} \int_{M} s_{\delta} c_{\delta} \leq\left(\int_{M} s_{\delta}^{2}\right) \int_{M} c_{\delta}
$$

Using this inequality and Lemma 2.2, we have

$$
\begin{align*}
\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right. & \left., \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle \tag{4}\\
& \leq \delta c(r) \int_{M} s_{\delta}^{2} H_{r}+c(r) \frac{\left(\max H_{r+1}\right)^{2}}{\min H_{r}} \int_{M} s_{\delta}^{2} \\
& \leq \delta c(r)\left(\min H_{r}\right) \int_{M} s_{\delta}^{2}+c(r) \frac{\left(\max H_{r+1}^{2}\right)}{\min H_{r}} \int_{M} s_{\delta}^{2}
\end{align*}
$$

By applying (3), we obtain

$$
\lambda_{1}^{L_{r}} \int_{M} s_{\delta}^{2} \leq \delta c(r)\left(\min H_{r}\right) \int_{M} s_{\delta}^{2}+c(r) \frac{\max H_{r+1}^{2}}{\min H_{r}} \int_{M} s_{\delta}^{2}
$$

Dividing both sides by $\int_{M} s_{\delta}^{2}$ gives the desired estimate.
If equality holds, then we necessarily have

$$
-\langle X, N\rangle=|X||N|
$$

and this implies that ∇d is orthogonal to M. Thus, d is constant on M, and therefore M is a geodesic sphere around p_{0}.

Proof of Theorem 1.2. Since $H_{r+1}>0$ and M is contained in a convex ball, L_{r} is again an elliptic operator (see [B-C, Proposition 3.2]). Put

$$
c=\frac{1}{\operatorname{vol} M} \int_{M} c_{\delta}, \quad \text { so } \quad \int_{M} \frac{\left(c_{\delta}-c\right)}{\sqrt{\delta}}=0
$$

Recall that $s_{\delta}(d)=\frac{1}{\sqrt{\delta}} \sin (\sqrt{\delta} d)$ and $c_{\delta}(d)=\cos (\sqrt{\delta} d)$, so $|c|<1$.

Using the Rayleigh quotient with $\frac{s_{\delta}(d)}{d} x_{i}$ and $\frac{c_{\delta}-c}{\sqrt{\delta}}$ as test functions, we obtain

$$
\begin{aligned}
& \lambda_{1}^{L_{r}} \int_{M}\left[s_{\delta}^{2}+\frac{\left(c_{\delta}-c\right)^{2}}{\delta}\right] \\
& \leq \int_{M} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M} \frac{s_{\delta}}{d} x_{i}, \nabla_{M} \frac{s_{\delta}}{d} x_{i}\right\rangle+\int_{M}\left\langle P_{r} \nabla_{M}\left(\frac{c_{\delta}-c}{\sqrt{\delta}}\right), \nabla_{M}\left(\frac{c_{\delta}-c}{\sqrt{\delta}}\right)\right\rangle \\
& \quad=\int_{M}\left[\sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle+\delta\left\langle P_{r} X^{T}, X^{T}\right\rangle\right]=c(r) \int H_{r}
\end{aligned}
$$

where the last equality follows from Lemma 2.2.
Further, a direct calculation gives

$$
\int_{M}\left[s_{\delta}^{2}+\frac{\left(c_{\delta}-c\right)^{2}}{\delta}\right]=\frac{1}{\delta}(\operatorname{vol} M)\left(1-c^{2}\right)
$$

Thus,

$$
\begin{equation*}
\lambda_{1}^{L_{r}} \leq\left(\frac{1}{1-c^{2}}\right) \delta \frac{c(r)}{\operatorname{vol} M} \int_{M} H_{r} . \tag{5}
\end{equation*}
$$

We next prove that

$$
\frac{1}{1-c^{2}} \leq 1+\frac{1}{\delta} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}
$$

By Lemma 2.3 we have

$$
c^{2}=\frac{1}{(\operatorname{vol} M)^{2}}\left(\int_{M} c_{\delta}\right)^{2} \leq \frac{1}{(\operatorname{vol} M)^{2}}\left(\frac{\max H_{r+1}}{\min H_{r}}\right)^{2}\left(\int_{M} s_{\delta}\right)^{2}
$$

and the Cauchy-Schwarz inequality gives

$$
\left(\int_{M} s_{\delta}\right)^{2} \leq\left(\int_{M} s_{\delta}^{2}\right) \operatorname{vol} M
$$

Therefore

$$
\begin{aligned}
& \left(1-c^{2}\right)\left(1+\frac{1}{\delta} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}\right) \\
& \quad \geq 1+\frac{1}{\delta} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}-\frac{1}{\operatorname{vol} M} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}} \int_{M} s_{\delta}^{2}-c^{2} \cdot \frac{1}{\delta} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}} \\
& \geq 1+\frac{1}{\delta} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}-\frac{1}{\operatorname{vol} M} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}} \int_{M} s_{\delta}^{2}-\left(\frac{1}{\operatorname{vol} M} \int_{M} c_{\delta}^{2}\right) \frac{1}{\delta} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}} \\
& \quad=1+\frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}\left(\frac{1}{\delta}-\frac{1}{\delta \operatorname{vol} M} \int_{M}\left(\delta s_{\delta}^{2}+c_{\delta}^{2}\right)\right)=1,
\end{aligned}
$$

where the last inequality follows from Cauchy-Schwarz inequality. Hence,

$$
\frac{1}{1-c^{2}} \leq 1+\frac{1}{\delta} \frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}
$$

From (5), we have

$$
\lambda_{1}^{L_{r}} \leq\left(\delta+\frac{\max H_{r+1}^{2}}{\min H_{r}^{2}}\right) c(r) \frac{\int H_{r}}{\operatorname{vol} M}
$$

If equality holds, we also have equality in Lemma 2.3, so $-\langle X, N\rangle=|X||N|$ and therefore ∇d is orthogonal do M. Hence, d is constant on M, and therefore M is a geodesic sphere around p_{0}.

Proof of Theorem 1.3. Using the Rayleigh quotient for the operator $L_{r}-q$, with $\frac{s_{\delta}}{d} x_{i}$ as test functions, we obtain
(6) $\quad \lambda_{1}\left(L_{r}-q\right) \int_{M} s_{\delta}^{2} \leq \int_{M} \sum_{i=1}^{n+1}\left(\frac{s_{\delta}}{d} x_{i}\right)\left[-L_{r}\left(\frac{s_{\delta}}{d} x_{i}\right)+q\left(\frac{s_{\delta}}{d} x_{i}\right)\right]$

$$
=\int_{M} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle+\int_{M} q s_{\delta}^{2}
$$

By (4) we have

$$
\begin{aligned}
& \int_{M} \sum_{i=1}^{n+1}\left\langle P_{r} \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right), \nabla_{M}\left(\frac{s_{\delta}}{d} x_{i}\right)\right\rangle \\
& \leq \delta c(r) \int_{M} s_{\delta}^{2} H_{r}+c(r) \frac{\max H_{r+1}^{2}}{\min H_{r}} \int_{M} s_{\delta}^{2}
\end{aligned}
$$

Applying this to (6), we obtain

$$
\begin{aligned}
\lambda_{1}\left(L_{r}-q\right) \int_{M} s_{\delta}^{2} \leq c(r) & \left(\int_{M} s_{\delta}^{2}\right) \frac{\max H_{r+1}^{2}}{\min H_{r}} \\
& +c(r+1) \int_{M} H_{r+2} s_{\delta}^{2}-\frac{n c(r)}{r+1} \int_{M} H_{1} H_{r+1} s_{\delta}^{2}
\end{aligned}
$$

Since $H_{r+2} \leq H_{1} H_{r+1}$, with equality at umbilical points (see [A-dC-R, p. 392]), we obtain

$$
\lambda_{1}\left(L_{r}-q\right) \int_{M} s_{\delta}^{2} \leq c(r)\left(\int_{M} s_{\delta}^{2}\right) \frac{\max H_{r+1}^{2}}{\min H_{r}}-c(r) \int_{M} H_{1} H_{r+1} s_{\delta}^{2}
$$

because $c(r+1)-\frac{n c(r)}{r+1}=-c(r)$.
Dividing both terms by $\int_{M} s_{\delta}^{2}$, the desired inequality follows. The case when equality holds is handled in the same way as in the previous cases.

Proof of Corollary 1.4. Let M^{n} be a compact hypersurface, immersed in $\bar{M}^{n+1}(\delta)$, where $\delta<0$, with $H_{r+1}>0$ and constant. Suppose M is r-stable, that is to say,

$$
\int_{M} f\left(-L_{r}+q\right)(f) \geq 0 \quad \text { when } \quad \int_{M} f=0 .
$$

Taking for f an eigenfunction of $L_{r}-q$ belonging to $\lambda_{1}^{L_{r}-q}$, we obtain

$$
\lambda_{1}^{L_{r}-q} \int_{M} f^{2} \geq 0
$$

and thus

$$
\begin{equation*}
\lambda_{1}^{L_{r}-q} \geq 0 \tag{7}
\end{equation*}
$$

Also, if $H_{r+1}>0$, then $H_{j}>0$ for all $j=1, \ldots, r$ (see [B-C, Proposition 3.1]) and $H_{r} \geq H_{r+1}^{\frac{r}{r+1}}$ (see [M-R, Lemma 1]). Hence,

$$
\begin{equation*}
\frac{\max H_{r+1}^{2}}{\min H_{r}} \leq \frac{H_{r+1}^{2}}{H_{r+1}^{\frac{r}{r+1}}}=H_{r+1}^{\frac{r+2}{r+1}} \tag{8}
\end{equation*}
$$

Since $H_{1} \geq H_{r+1}^{\frac{1}{r+1}}$, it follows that

$$
\begin{equation*}
H_{r+1}^{\frac{r+2}{r+1}}-H_{1} H_{r+1} \leq 0 \tag{9}
\end{equation*}
$$

with equality at umbilical points.
By (7), (8), (9) and Theorem 1.3, we conclude that $H_{r+1}^{\frac{r+2}{r+1}}-H_{1} H_{r+1}=0$ everywhere, and so M is a geodesic sphere.

References

[A-C] H. Alencar and A. G. Colares, Integral formulas for the r-mean curvature linearized operator of a hypersurface, Ann. Global Anal. Geom. 16 (1998), 203-220.
[A-dC-C] H. Alencar, M. Do Carmo, and A. G. Colares, Stable hypersurfaces with constant scalar curvature, Math. Z. 213 (1993), 117-131.
[A-dC-R] H. Alencar, M. Do Carmo, and H. Rosenberg, On the first eigenvalue of the linearized operator of the r-th mean curvature of a hypersurface, Ann. Global Anal. Geom. 11 (1993), 387-391.
[B-C] L. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), 277-297.
[B-dC] L. Barbosa and M. Do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z. 195 (1984), 339-353.
[B-dC-E] L. Barbosa, M. Do Carmo, and J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), 123-138.
[ESI] A. El-Soufi and S. Ilias, Une inegalité du type Reilly pour les sous-varietés de l'space hyperbolique, Comment. Math. Helv. 67 (1992), 167-181.
[G1] J.-F. Grosjean, Majoration de la première valeur propre de certains opérateurs elliptiques naturels sur les hypersurfaces des espaces formes et applications, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 323-326.
[G2] , Estimations extrinséques de la première valeur propre d'opérateurs elliptiques définis sur des sous-variétés, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 807-810.
[H] E. Heintze, Extrinsic upper bounds for λ_{1}, Math. Ann. 280 (1988), 389-402.
[M-R] S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, Differential Geometry (B. Lawson and K. Tenenblat, eds.), Pitman Monographs, vol. 52, Longman Scientific and Technical, Essex, 1991, pp. 279-296.
[R] R. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), 525-533.

Hilário Alencar, Departamento de Matemática, Universidade Federal de AlaGOAS, 57072-900, MACEIÓ - AL, Brazil

E-mail address: hilario@mat.ufal.br
Manfredo do Carmo, Instituto de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, 22460-320, Rio de Janeiro - RJ, Brazil

E-mail address: manfredo@impa.br
Fernando Marques, Department of Mathematics, Cornell University, Ithaca, NY 14853-4089, USA

E-mail address: marques@polygon.math.cornell.edu

[^0]: 2000 Mathematics Subject Classification. 53C42, 53A10.
 The authors were partially supported by CNPq. The second author was partially supported by FAPERJ.

