Integral Formulas for the r-Mean Curvature Linearized Operator of a Hypersurface

HILARIO ALENCAR*

Departamento de Matemática, Universidade Federal de Alagoas, 57072-970 Maceio - Al, Brazil (E-mail: hilario@dcc.ufal.br)

A. GERVASIO COLARES*

Departamento de Matemática, Universidade Federal do Ceará, 60455-760 Fortaleza - Ce, Brazil (E-mail: gcolares@mat.ufc.br)

Abstract. For a normal variation of a hypersurface M^{n} in a space form Q_{c}^{n+1} by a normal vector field $f N$, R. Reilly proved:

$$
\left.\frac{d}{d t} S_{r+1}(t)\right|_{t=0}=L_{r} f+\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right) f+c(n-r) S_{r} f
$$

where $L_{r}(0 \leq r \leq n-1)$ is the linearized operator of the $(r+1)$-mean curvature S_{r+1} of M^{n} given by $L_{r}=\operatorname{div}\left(P_{r} \nabla\right)$; that is, $L_{r}=$ the divergence of the r th Newton transformation P_{r} of the second fundamental form applied to the gradient ∇, and $L_{0}=\Delta$ the Laplacian of M^{n}.

From the Dirichlet integral formula for L_{r},

$$
\int_{M^{n}}\left(f L_{r} g+\left\langle P_{r} \nabla f, \nabla g\right\rangle\right)=0
$$

new integral formulas are obtained by making different choices of f and g, generalizing known formulas for the Laplacian. The method gives a systematic process for proofs and a unified treatment for some Minkowski type formulas, via L_{r}.

1991 Mathematics Subject Classification: Primary: 53C21, 53C40, 53C42
Key words: integral formula, linearized operator L_{r}, r-mean curvature

1. Introduction

Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an isometric immersion of a compact oriented Riemannian manifold M^{n} into the Euclidean space \mathbb{R}^{n+1} with inner product \langle,$\rangle and volume$ element $d M$. The Dirichlet integral formula for the Laplacian Δ of M^{n},

$$
\int_{M^{n}}(f \Delta g+\langle\nabla f, \nabla g\rangle) d M=0
$$

gives rise to useful integral formulas for conveniently chosen functions f and g on M^{n}. For example, if $f=1$ and $g=\langle x, x\rangle / 2$ we obtain the Minkowski formula
$\int_{M^{n}}\left(1+H_{1}(\langle x, N\rangle) d M=0\right.$,

[^0]where N a unit normal vector field on M^{n} and H_{1} is the normalized mean curvature of x given by $H_{1}=(1 / n) S_{1}$ with
$$
S_{1}=\sum_{i=1}^{n} \lambda_{i}
$$
and $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of the second fundamental form B of x. Here $\lambda_{i}=\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle, 1 \leq i \leq n$, where e_{1}, \ldots, e_{n} are the corresponding eigenvectors and ∇ is the covariant derivative of the ambient space (see Section 2).

If $x: M^{n} \rightarrow Q_{c}^{n+1}$ is an isometric immersion into a simply connected space form Q_{c}^{n+1}, that is, $\mathbb{R}^{n+1}, \mathbb{S}^{n+1}$ and \mathbb{H}^{n+1} with curvature $c=0, c>0$ and $c<0$, respectively, let X_{t} be a normal variation of x and $S_{1}(t)$ the mean curvature of $X_{t}\left(M^{n}\right)$. It is known that

$$
\left.\frac{d}{d t} S_{1}(t)\right|_{t=0}=\Delta f+|B|^{2} f+c n f
$$

where $f=\left\langle\partial X_{t} /\left.\partial t\right|_{t=0}, N\right\rangle$. This shows that the Laplacian is the linearized operator of S_{1} arising from normal variations of x. For the r-mean curvature of x given by

$$
S_{r}=\sum_{i_{1}<\cdots<i_{r}} \lambda_{i_{1}} \ldots \lambda_{i_{r}}, \quad 1 \leq r \leq n,
$$

Reilly [20] proved that

$$
\left.\frac{d}{d t} S_{r+1}(t)\right|_{t=0}=L_{r} f+\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right) f+c(n-r) S_{r} f,
$$

where L_{r} is the linearized operator of S_{r+1} arising from normal variations of x given by

$$
L_{r} f=\operatorname{div}\left(P_{r} \nabla f\right)
$$

and $S_{0}=1$. Here ∇f and div are, respectively, the gradient of f and the divergence operator on M^{n} and P_{r} is the r th Newton transformation, a polynomial in the second fundamental form B of x defined inductively by

$$
\begin{aligned}
& P_{0}=I, \\
& P_{r}=S_{r} I-B P_{r-1} .
\end{aligned}
$$

It follows that B and P_{r} have the same eigenvectors and each eigenvalue of P_{r} is the partial derivative of S_{r+1} with respect to the corresponding eigenvalue of B (see Section 3). The Dirichlet integral formula for L_{r} is then

$$
\begin{equation*}
\int_{M^{n}}\left(f L_{r} g+\left\langle P_{r} \nabla f, \nabla g\right\rangle\right) d M=0, \tag{1.1}
\end{equation*}
$$

where f and g are functions on M^{n}.
Denote by $\operatorname{grad} s$ the gradient of the distance function $s(\cdot)=d\left(\cdot, p_{0}\right)$ in Q_{c}^{n+1}, where $p_{0} \in Q_{c}^{n+1}$ is a fixed point. Note that s is differentiable, except at p_{0} and $-p_{0}$ for $c>0$. Define the position vector X of M^{n} in Q_{c}^{n+1}, with respect to p_{0}, by

$$
X=S_{c}(s) \operatorname{grad} s
$$

with $S_{c}(s)=s, \sin (s \sqrt{c}) / \sqrt{c}$ or $\sinh (s \sqrt{-c}) / \sqrt{-c}$, according to $c=0, c>0$ or $c<0$ [2]. Note that for $c=0$, we have $X=x$. Denote $\theta_{c}(s)=(d / d s) S_{c}(s)$ and $X^{T}=$ the component of X tangent to M^{n}.

We will prove the following
THEOREM 1. Let $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion of a compact oriented Riemannian manifold M^{n} and $0 \leq p \leq n, 1 \leq q \leq n$ integers. Then, for any c,
(a) $\int_{M^{n}}\left(\langle X, N\rangle^{p}\left\{\left(\frac{\langle X, X\rangle}{2}\right)^{q-1}\left[\theta_{c}\left((n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle S, N\rangle\right)\right.\right.\right.$
$\left.\left.-\frac{c}{n}\left|X^{T}\right|^{2}(n-r) S_{r}\right]+\frac{(q-1)}{n}\left\langle\frac{X, X}{2}\right\rangle^{q-2} \theta_{c}^{2}\left|X^{T}\right|^{2}(n-r) S_{r}\right\}$
$\left.-\frac{p}{n}\langle X, N\rangle^{p-1}\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} \theta_{c}\left|X^{T}\right|^{2}(r+1) S_{r+1}\right) d M=0 ;$
(b) $\int_{M^{n}}\left(\langle X, N\rangle^{p}\left\{\theta_{c}^{q-1}\left[(n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle S, N\rangle\right]\right.\right.$
$\left.-\frac{c}{n}(q-1) \theta_{c}^{q-2}\left|X^{T}\right|^{2}(n-r) S_{r}\right\}$
$\left.-\frac{p}{n} \theta_{c}^{q-1}\langle X, N\rangle^{p-1}\left|X^{T}\right|^{2}(r+1) S_{r+1}\right) d M=0 ;$
(c) $\int_{M^{n}}\left(\left(\frac{\langle X, X\rangle}{2}\right)^{p}\left\{\langle X, N\rangle^{q-1}\left[-(r+1) S_{r+1} \theta_{c}-\left(S_{1} S_{r+1}\right.\right.\right.\right.$
$\left.\left.-(r+2) S_{r+2}\right)\langle X, N\rangle-\left\langle\left(\nabla S_{r+1}\right)^{T}, X\right\rangle\right]$
$\left.+\frac{(q-1)}{n}\langle X, N\rangle^{q-2}\left|X^{T}\right|^{2}\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right)\right\}$
$\left.-\frac{p}{n}\left(\frac{\langle X, X\rangle}{2}\right)^{p-1}\langle X, N\rangle^{q-1} \theta_{c}\left|X^{T}\right|^{2}(r+1) S_{r+1}\right) d M=0$.

These formulas are obtained choosing first $f=\langle X, N\rangle^{p}$ and $g=(\langle X, X\rangle / 2)^{q}$ in (1.1), for (a); then, we choose $f=\langle X, N\rangle^{p}$ and $g=\theta_{c}^{q}$ in (1.1) to obtain (b) for
$c \neq 0$, and if $c=0$, (b) comes from (a) with $q=1$; finally, take $f=(\langle X, X\rangle / 2)^{p}$ and $g=\langle X, N\rangle^{q}$ in (1.1) to prove (c).

The formulas in (a) and (b) generalize Minkowski formulas. In fact, if $c=0$, $p=0$ and $q=1$ in (a) we obtain

$$
\begin{equation*}
\int_{M^{n}}\left(H_{r}+H_{r+1}\langle X, N\rangle\right) d M=0 \tag{1.2}
\end{equation*}
$$

proved by Hsiung in [11], where H_{r} is the normalized r-mean curvature given by $H_{r}=S_{r} /\binom{n}{r}$. For $p=0$ and $q=1$, (b) gives, for any c,

$$
\begin{equation*}
\int_{M^{n}}\left(H_{r} \theta_{c}+H_{r+1}\langle X, N\rangle\right) d M=0, \tag{1.3}
\end{equation*}
$$

which yields a Minkowski formula in S^{n+1} and H^{n+1} first proved by Bivens [5] (see also [7, 10, 14]). By taking $c=0$ and $q=1$ in (a) we obtain a formula proved by Shahin [21] and Gardner [9, eq. (2.7)], which has been proved for $n=2$ by Chern in [6]. For $c=0$, similar formulas to (a) were proved in [22].

Thus, Theorem 1 generalizes all these formulas offering a systematic process for the proofs. In fact, our method gives a unified treatment for some Minkowski type formulas via the $(r+1)$-mean curvature linearized operator L_{r} of a hypersurface in a space form.

As an application of (b) with $p=0$ and $q=1$ we will prove the following
THEOREM 2. Let M^{n} be a compact oriented Riemannian manifold and $x: M^{n} \rightarrow$ Q_{c}^{n+1} an isometric immersion with constant $(r+1)$-mean curvature $H_{r+1}, 0 \leq$ $r \leq n-1$. If $c>0$ assume that $x\left(M^{n}\right)$ is contained in an open hemisphere of Q_{c}^{n+1}. Then, the set of points

$$
W=Q_{c}^{n+1}-\bigcup_{p \in M}\left(Q_{c}^{n}\right)_{p}
$$

which are omitted by the totally geodesic hypersurfaces $\left(Q_{c}^{n}\right)_{p}$ tangent to $x\left(M^{n}\right)$ is non-empty if and only if $x\left(M^{n}\right)$ is a geodesic sphere.

For $r=0$, this fact was proved by Alencar and Frensel in [2]. The condition that W is non-empty in Theorem 2 is equivalent to r-stability of compact hypersurfaces with H_{r+1} constant in Q_{c}^{n+1}; for the definitions of r-stability, see Section 5 . There are several papers containing some generalization of Minkowski type formulas, for example [12, 13, 18, 22]. We would like to thank Udo Simon for bringing to our attention the work by Kohlman [14] and Simon [22].

2. Preliminaries

Let Q_{c}^{n+1} be a simply connected space form of constant curvature c. For $c=0$, it is the Euclidean space \mathbb{R}^{n+1}. We assume that for $c>0, Q_{c}^{n+1}$ is the $(n+1)$-sphere
with radius $1 / \sqrt{c}$ in \mathbb{R}^{n+2} and for $c<0, Q_{c}^{n+1}$ is the hyperbolic model $\mathbb{H}^{n+1}(c)$ in \mathbb{R}^{n+2}.

Let $x: M \rightarrow Q_{c}^{n+1}$ be an isometric immersion of an n-dimensional oriented Riemannian manifold M^{n}. Let X be the position vector of M^{n} with origin at $p_{0} \in Q_{c}^{n+1}$, defined in the Introduction. By analogy with the Euclidean case, for a unit normal vector field N we call $\langle X, N\rangle$ the support function of the immersion from the point p_{0}.

To fix notation, we let ∇ be the covariant derivative in Q_{c}^{n+1} and B the second fundamental form of x whose matrix with respect to an orthonormal basis e_{1}, \ldots, e_{n} is given by

$$
h_{i j}=\left\langle\nabla_{e_{i}} e_{j}, N\right\rangle
$$

Fix a point $p_{0} \in Q_{c}^{n+1}$ and consider the distance function $s(\cdot)=d\left(p_{0}, \cdot\right)$ in $Q_{c}^{n+1}\left(Q_{c}^{n+1}-\left\{p_{0},-p_{0}\right\}\right.$ for $\left.c>0\right)$. Let e_{1}, \ldots, e_{n} be an orthonormal local basis on M^{n}. Then

$$
\begin{equation*}
\nabla_{e_{i}} \operatorname{grad} s=\frac{\theta_{c}}{S_{c}}\left(e_{i}-\left\langle\operatorname{grad} s, e_{i}\right\rangle \operatorname{grad} s\right) \tag{2.1}
\end{equation*}
$$

In fact, if we decompose $e_{i}=\left\langle\operatorname{grad} s, e_{i}\right\rangle \operatorname{grad} s+v_{i}$, where v_{i} is in the plane spanned by e_{i} and $\operatorname{grad} s$, then

$$
\nabla_{e_{i}} \operatorname{grad} s=\left\langle\operatorname{grad} s, e_{i}\right\rangle \nabla_{\operatorname{grad} s} \operatorname{grad} s+\nabla_{v_{i}} \operatorname{grad} s=\frac{\theta_{c}}{S_{c}} v_{i}
$$

In the last equality we used that v_{i} is tangent to a geodesic circle of radius s in Q_{c}^{n+1} whose geodesic curvature is θ_{c} / S_{c}.

From (2.1) we get

$$
\begin{equation*}
\nabla_{e_{j}} X=\theta_{c}\left[\operatorname{grad} s\left\langle\operatorname{grad} s, e_{j}\right\rangle+e_{j}-\left\langle\operatorname{grad} s, e_{j}\right\rangle \operatorname{grad} s\right]=\theta_{c} e_{j} \tag{2.2}
\end{equation*}
$$

Hence

$$
\nabla_{e_{i}} \nabla_{e_{j}} X=\theta_{c} h_{i j} N+\sum_{k}\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle e_{k}-c\left\langle X, e_{i}\right\rangle e_{j}
$$

where $\left(h_{i j}\right)$ is the matrix of B with respect to e_{i}. For a geodesic frame e_{1}, \ldots, e_{n} at a point of \mathbb{R}^{n+1} this becomes

$$
\begin{equation*}
\nabla_{e_{i}} \nabla_{e_{j}} X=\theta_{c} h_{i j} N-c\left\langle X, e_{i}\right\rangle e_{j} . \tag{2.3}
\end{equation*}
$$

For the unit normal vector field N and geodesic frame e_{1}, \ldots, e_{n} we have

$$
\begin{aligned}
\nabla_{e_{i}} \nabla_{e_{j}} N & =\nabla_{e_{i}}\left(-\sum_{k} h_{j k} e_{k}\right) \\
& =-\sum_{k}\left(\nabla_{e_{i}} h_{j k}\right) e_{k}-h_{i j}^{2} N
\end{aligned}
$$

Therefore, by (2.2) and the Codazzi equations we get

$$
\begin{equation*}
\nabla_{e_{i}} \nabla_{e_{j}}\langle X, N\rangle=-\theta_{c} h_{i j}-\sum_{k}\left(\nabla_{e_{k}} h_{i j}\right)\left\langle X, e_{k}\right\rangle-h_{i j}^{2}\langle X, N\rangle . \tag{2.4}
\end{equation*}
$$

3. The Operator L_{r}

Let $x: M \rightarrow Q_{c}^{n+1}$ be an isometric immersion of a Riemannian manifold M^{n} with second fundamental form B and eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. The elementary symmetric functions S_{r} associated to B are defined by

$$
S_{r}=\sum_{i_{1}<\cdots<i_{r}} \lambda_{i_{1}} \ldots \lambda_{i_{r}},
$$

and the r-mean curvature

$$
\begin{equation*}
H_{r}=\left(1 /\binom{n}{r}\right) S_{r} . \tag{3.1}
\end{equation*}
$$

Set $S_{0}=H_{0}=1$ and $S_{r}=H_{r}=0$ if $r \notin\{0,1, \ldots, n\}$. The r th Newton transformation P_{r} is defined, inductively, by

$$
\begin{aligned}
& P_{0}=I, \\
& P_{r}=S_{r} I-B P_{r-1} .
\end{aligned}
$$

Since P_{r} is a polynomial in B, we have that $B P_{r}=P_{r} B$ and B and P_{r} are simultaneously diagonalizable. If $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of B, then the eigenvalues of P_{r} are the partial derivatives of $S_{r+1}=S_{r+1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with respect to $\lambda_{1}, \ldots, \lambda_{n}$, denoted by $S_{r}\left(B_{1}\right), \ldots, S_{r}\left(B_{n}\right)$; that is,

$$
S_{r}\left(B_{j}\right)=S_{r}\left(\lambda_{1}, \ldots, \lambda_{j-1}, \lambda_{j+1}, \ldots, \lambda_{n}\right),
$$

the r-elementary symmetric function associated to the restriction B_{j} of B to the subspace orthogonal to the corresponding eigenvector e_{j}. Associated to P_{r} we have a second order differential operator L_{r} defined by

$$
\begin{equation*}
L_{r} f=\operatorname{trace}\left(P_{r} \text { Hess }(f)\right), \tag{3.2}
\end{equation*}
$$

where Hess (f) is the Hessian matrix of the function $f: M^{n} \rightarrow \mathbb{R}$. It follows that

$$
L_{r} f=\operatorname{div}\left(P_{r} \nabla f\right),
$$

where ∇f is the gradient of f and div is the divergence operator on M^{n} [17].
LEMMA 1. Let $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion of an n-dimensional oriented Riemannian manifold M^{n} into a space form Q_{c}^{n+1}. Then,
(a) $L_{r} \theta_{c}=-c\left[(n-r) S_{r} \theta_{c}+(r+1)\langle X, N\rangle S_{r+1}\right]$, if $c \neq 0$;
(b) $\frac{1}{2} L_{r}|X|^{2}=\theta_{c}\left[(n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle X, N\rangle\right]-\frac{c}{n}\left|X^{T}\right|^{2}(n-r) S_{r}$, for any c.

Proof. A direct computation with a geodesic frame e_{1}, \ldots, e_{n} gives that

$$
\nabla_{e_{i}} \nabla_{e_{j}} \theta_{c}=-c\left(\theta_{c} \delta_{i j}+h_{i j}\langle X, N\rangle\right) .
$$

Hence

$$
\begin{aligned}
L_{r} \theta_{c} & =-c\left[\sum_{i j}\left(S_{r} \delta_{i j}-\cdots+(-1)^{r} h_{i j}^{r}\right)\left(\theta_{c} \delta_{i j}+h_{i j}\langle X, N\rangle\right)\right] \\
& =-c\left[\theta_{c} \operatorname{trace} P_{r}+\langle X, N\rangle \operatorname{trace}\left(B P_{r}\right)\right] \\
& =-c\left[\theta_{c}(n-r) S_{r}+(r+1)\langle X, N\rangle S_{r+1}\right] .
\end{aligned}
$$

In the last equality we have used that

$$
\begin{equation*}
\operatorname{trace} P_{r}=(n-r) S_{r} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(r+1) S_{r+1}=\operatorname{trace}\left(B P_{r}\right), \tag{3.4}
\end{equation*}
$$

which are proved in [3, lemma 2.1]. This proves (a).
To prove (b) we will use (2.2) and (2.3) to obtain

$$
\begin{aligned}
\nabla_{e_{i}} \nabla_{e_{j}}\langle X, X\rangle & =2 \nabla_{e_{i}}\left\langle\nabla_{e_{j}} X, X\right\rangle \\
& =2\left\langle\nabla_{e_{j}} \nabla_{e_{i}} X, X\right\rangle+2\left\langle\nabla_{e_{j}} X, \nabla_{e_{i}} X\right\rangle \\
& =2 \theta_{c} h_{i j}\langle X, N\rangle+2 \theta_{c}^{2} \delta_{i j}-2 c\left\langle X, e_{i}\right\rangle\left\langle X, e_{j}\right\rangle .
\end{aligned}
$$

Hence, by (3.2) we get

$$
\begin{aligned}
\frac{1}{2} L_{r}|X|^{2}= & \frac{1}{2} \operatorname{trace}\left(P_{r} \nabla_{e_{i}} \nabla_{e_{j}}|X|^{2}\right) \\
= & \operatorname{trace}\left(h_{i j} P_{r}\langle X, N\rangle\right) \theta_{c}+\operatorname{trace}\left(P_{r}\right) \theta_{c}^{2} \\
& -c \operatorname{trace}\left(\left\langle X, e_{i}\right\rangle\left\langle X, e_{j}\right\rangle P_{r}\right) \\
= & (n-r) S_{r} \theta_{c}^{2}+(r+1) S_{r+1}\langle X, N\rangle \theta_{c}-\frac{c}{n}\left|X^{T}\right|^{2}(n-r) S_{r},
\end{aligned}
$$

by (3.3) and (3.4), if we choose e_{1}, \ldots, e_{n} such that, at a point, $\left\langle X, e_{i}\right\rangle=\left\langle X, e_{j}\right\rangle$, $\forall i, j$. This finishes the proof of Lemma 1 .

LEMMA 2. Let $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion of an oriented Riemannian manifold M^{n} into a space form Q_{c}^{n+1}. Then

$$
\begin{aligned}
L_{r}\langle X, N\rangle= & -(r+1) S_{r+1} \theta_{c} \\
& -\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right)\langle X, N\rangle-\left\langle\left(\nabla S_{r+1}\right)^{T}, X\right\rangle .
\end{aligned}
$$

Proof. By (3.2) and (2.4) we have

$$
\begin{aligned}
L_{r}\langle X, N\rangle= & \operatorname{trace}\left(P_{r} \text { Hess }\langle X, N\rangle\right) \\
= & -\theta_{c} \operatorname{trace}\left(P_{r}\left(h_{i j}\right)\right)-\operatorname{trace}\left(P_{r}\left(\sum_{k} \nabla_{e_{k}} h_{i j}\left\langle X, e_{k}\right\rangle\right)\right) \\
& -\operatorname{trace}\left(P_{r}\left(h_{i j}^{2}\right)\langle X, N\rangle\right) .
\end{aligned}
$$

By using (3.3), (3.4) and the fact that

$$
\operatorname{trace}\left(P_{r} B^{2}\right)=S_{1} S_{r+1}-(r+2) S_{r+2}
$$

[3, lemma 2.1] one obtains

$$
\begin{aligned}
L_{r}\langle X, N\rangle= & -\theta_{c}(r+1) S_{r+1}-\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right)\langle X, N\rangle \\
& -\sum_{k} \operatorname{trace}\left(\nabla_{e_{k}} h_{i j} P_{r}\right)\left\langle X, e_{k}\right\rangle .
\end{aligned}
$$

We claim that

$$
\operatorname{trace}\left(\sum_{k}\left(\nabla_{e_{k}} h_{i j} P_{r}\right)\left\langle X, e_{k}\right\rangle\right)=\left\langle\left(\nabla S_{r+1}\right)^{T}, X\right\rangle .
$$

In fact, by lemma A, (a) in [19] we have

$$
\begin{aligned}
r \nabla_{e_{k}} S_{r+1} & =\sum_{i j} h_{i j}\left(\nabla_{e_{k}}\left(P_{r}\right)_{i j}\right) \\
& =\sum_{j} \lambda_{j}\left(\nabla_{e_{k}} S_{r}\left(B_{j}\right)\right) \\
& =\sum_{j} \nabla_{e_{k}}\left(\lambda_{j} S_{r}\left(B_{j}\right)\right)-\sum_{j} \nabla e_{k} \lambda_{j}\left(S_{r}\left(B_{j}\right)\right),
\end{aligned}
$$

where λ_{j} and $S_{r}\left(B_{j}\right)$ are the eigenvalues of B and P_{r}, respectively.
On the other hand, by (3.4),

$$
\nabla_{e_{k}} \operatorname{trace}\left(B P_{r}\right)=(r+1) \nabla_{e_{k}} S_{r+1} .
$$

Hence,

$$
\begin{aligned}
r \nabla_{e_{k}} S_{r+1} & =\sum_{j} \nabla_{e_{k}}\left(\lambda_{j} S_{r}\left(B_{j}\right)\right)-\sum_{j} \nabla_{e_{k}} \lambda_{j}\left(S_{r}\left(B_{j}\right)\right) \\
& =\nabla_{e_{k}} \operatorname{trace}\left(B P_{r}\right)-\sum_{j} \nabla_{e_{k}} \lambda_{j}\left(S_{r}\left(B_{j}\right)\right) \\
& =(r+1) \nabla_{e_{k}} S_{r+1}-\operatorname{trace} \nabla_{e_{k}} h_{i j}\left(\left(P_{r}\right)_{i j}\right) .
\end{aligned}
$$

This yields

$$
\nabla_{e_{k}} S_{r+1}=\operatorname{trace} \nabla_{e_{k}} h_{i j}\left(\left(P_{r}\right)_{i j}\right)
$$

and so,

$$
\left\langle\left(\nabla S_{r+1}\right)^{T}, X\right\rangle=\operatorname{trace} \sum_{k} \nabla_{e_{k}} h_{i j}\left(\left(P_{r}\right)_{i j}\right)\left\langle X, e_{k}\right\rangle,
$$

proving the claim. By substituting this in the last expression of $L_{r}\langle X, N\rangle$ above, we finish the proof of the lemma.

For any differentiable functions f and g on M^{n}, the operator L_{r} satisfies

$$
\begin{equation*}
L_{r} f g=f L_{r} g+g L_{r} f+2\left\langle P_{r} \nabla f, \nabla g\right\rangle \tag{3.5}
\end{equation*}
$$

and, if M^{n} is compact,

$$
\begin{equation*}
\int_{M^{n}}\left(f L_{r} g\right) d M=\int_{M^{n}}\left(g L_{r} f\right) d M \tag{3.6}
\end{equation*}
$$

(see [17]). Hence,

$$
\begin{equation*}
\int_{M^{n}}\left(f L_{r} g+\left\langle P_{r} \nabla f, \nabla g\right\rangle\right) d M=0 . \tag{3.7}
\end{equation*}
$$

We will also need the formula

$$
\begin{equation*}
L_{r} f^{p}=p\left(f^{p-1} L_{r} f+\left\langle P_{r} \nabla f, \nabla f^{p-1}\right\rangle\right), \tag{3.8}
\end{equation*}
$$

for any positive integer p.
The most striking property of L_{r} is that when M^{n} is compact (for $c>0$ assume further that $x\left(M^{n}\right)$ is contained in an open hemisphere) and $S_{r+1}>0$, the operator L_{r} is elliptic [14] (see also [3]).

4. Proofs of the Integral Formulas for L_{r}

Here we will prove Theorem 1. First, we need to compute $L_{r}(\langle X, X\rangle / 2)^{q}$, $L_{r}\langle X, N\rangle^{p}$ and $L_{r} \theta_{c}^{q}$. Since

$$
\nabla\left(\frac{\langle X, X\rangle}{2}\right)=\theta_{c} \sum_{i=1}^{n}\left\langle e_{i}, X\right\rangle e_{i},
$$

we get

$$
\begin{align*}
\nabla\left(\frac{\langle X, X\rangle}{2}\right)^{q} & =q\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} \theta_{c} \sum_{i=1}^{n}\left\langle e_{i}, X\right\rangle e_{i} \\
& =q\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} \theta_{c} X^{T} \tag{4.1}
\end{align*}
$$

Hence, by (3.8) and Lemma 1,

$$
\begin{align*}
L_{r}\left(\frac{\langle X, X\rangle}{2}\right)^{q}= & q\left[\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} L_{r}\left(\frac{\langle X, X\rangle}{2}\right)\right. \\
& \left.+\left\langle P_{r} \nabla\left(\frac{\langle X, X\rangle}{2}\right), \nabla\left(\frac{\langle X, X\rangle}{2}\right)^{q-1}\right\rangle\right] \\
= & q\left[(\frac { \langle X , X \rangle } { 2 }) ^ { q - 1 } \left\{\theta_{c}\left[(n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle X, N\rangle\right]\right.\right. \\
& \left.-c \frac{(n-r)}{n} S_{r}\left|X^{T}\right|^{2}\right\} \\
& \left.+(q-1)\left(\frac{\langle X, X\rangle}{2}\right)^{q-2} \theta_{c}^{2}\left\langle P_{r} X^{T}, X^{T}\right\rangle\right] \\
= & q\left[(\frac { \langle X , X \rangle } { 2 }) ^ { q - 1 } \left\{\theta_{c}\left[(n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle X, N\rangle\right]\right.\right. \\
& \left.-c(n-r) S_{r} \frac{\left|X^{T}\right|^{2}}{n}\right\} \\
& \left.+(q-1)\left(\frac{\langle X, X\rangle}{2}\right)^{q-2} \theta_{c}^{2} \frac{\left|X^{T}\right|^{2}}{n}(n-r) S_{r}\right] \tag{4.2}
\end{align*}
$$

since

$$
\begin{align*}
\left\langle P_{r} X^{T}, X^{T}\right\rangle & =\sum_{k}\left\langle e_{k}, X\right\rangle^{2}\left\langle P_{r} e_{k}, e_{k}\right\rangle \\
& =\frac{\left|X^{T}\right|^{2}}{n}(n-r) S_{r} \tag{4.3}
\end{align*}
$$

if we choose e_{1}, \ldots, e_{n} such that, at a point,

$$
\left\langle e_{j}, X\right\rangle=\left\langle e_{k}, X\right\rangle, \quad \forall j, k
$$

Now we compute $L_{r}(\langle X, N\rangle)^{p}$. We have

$$
\begin{align*}
\nabla(\langle X, N\rangle)^{p} & =p(\langle X, N\rangle)^{p-1} \nabla\langle X, N\rangle \\
& =-p(\langle X, N\rangle)^{p-1} \sum_{j k} h_{j k}\left\langle e_{k}, X\right\rangle e_{j} \tag{4.4}
\end{align*}
$$

since

$$
\begin{aligned}
\nabla\langle X, N\rangle & =\sum_{j}\left(\left\langle\nabla_{j} X, N\right\rangle e_{j}+\left\langle X, \nabla_{j} N\right\rangle\right) e_{j} \\
& =-\sum_{j k} h_{j k}\left\langle e_{k}, X\right\rangle e_{j}
\end{aligned}
$$

Hence, by (3.8) and Lemma 2,

$$
\begin{align*}
L_{r}\langle X, N\rangle^{p}= & p\left[\langle X, N\rangle^{p-1} L_{r}\langle X, N\rangle+\left\langle P_{r} \nabla\langle X, N\rangle, \nabla\langle X, N\rangle^{p-1}\right\rangle\right] \\
= & p\left[\langle X , N \rangle ^ { p - 1 } \left(-(r+1) S_{r+1} \theta_{c}\right.\right. \\
& \left.-\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right)\langle X, N\rangle-\left\langle\left(\nabla S_{r+1}\right)^{T}, X\right\rangle\right) \\
& \left.+(p-1)\langle X, N\rangle^{p-2} \frac{\left|X^{T}\right|^{2}}{n}\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right)\right] . \tag{4.5}
\end{align*}
$$

We used

$$
\begin{aligned}
\left\langle P_{r} \nabla\right. & \left.\langle X, N\rangle, \nabla\langle X, N\rangle^{p-1}\right\rangle \\
& =(p-1)\langle X, N\rangle^{p-2} \sum_{i j k} h_{j k} h_{i k}\left\langle e_{k}, X\right\rangle\left\langle e_{k}, X\right\rangle\left\langle P_{r} e_{j}, e_{i}\right\rangle \\
& =(p-1)\langle X, N\rangle^{p-2} \frac{\left|X^{T}\right|^{2}}{n} \sum_{i j} h_{i j}^{2}\left(P_{r}\right)_{i j} \\
& =(p-1)\langle X, N\rangle^{p-2} \frac{\left|X^{T}\right|^{2}}{n} \operatorname{trace}\left(B^{2} P_{r}\right) \\
& =(p-1)\langle X, N\rangle^{p-2} \frac{\left|X^{T}\right|^{2}}{n}\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right),
\end{aligned}
$$

under the hypothesis that, at a point, $\left\langle e_{k}, X\right\rangle=\left\langle e_{j}, X\right\rangle, \forall j, k$.
To compute $L_{r} \theta_{c}$ we use that

$$
\begin{equation*}
\nabla \theta_{c}=-c X^{T} . \tag{4.6}
\end{equation*}
$$

Hence (3.8) and Lemma 1 give that

$$
\begin{align*}
L_{r} \theta_{c}^{q}= & q\left(\theta_{c}^{q-1} L_{r} \theta_{c}+\left\langle P_{r} \nabla \theta_{c}, \nabla \theta_{c}^{q-1}\right\rangle\right) \\
= & q\left(\theta_{c}^{q-1}\left[-c\left((n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle X, N\rangle\right)\right]\right. \\
& \left.+(q-1) \theta_{c}^{q-2}\left\langle P_{r} \nabla \theta_{c}, \nabla \theta_{c}\right\rangle\right) \\
= & q\left(\theta_{c}^{q-1}\left[-c\left((n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle X, N\rangle\right)\right]\right. \\
& \left.+(q-1) \theta_{c}^{q-2} c^{2}\left\langle P_{r} X^{T}, X^{T}\right\rangle\right) \\
= & q\left(\theta_{c}^{q-1}\left[-c\left((n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle X, N\rangle\right)\right]\right. \\
& \left.+c^{2}(q-1) \theta_{c}^{q-2} \frac{\left|X^{T}\right|^{2}}{n}(n-r) S_{r}\right) . \tag{4.7}
\end{align*}
$$

Now we prove Theorem 1.

Proof of (a). Choose $f=\langle X, N\rangle^{p}$ and $g=(\langle X, X\rangle / 2)^{q}$ in (3.7) to obtain

$$
\begin{equation*}
\int_{M^{n}}\langle X, N\rangle^{p} L_{r}\left(\frac{\langle X, X\rangle}{2}\right)^{q}+\left\langle P_{r} \nabla\langle X, N\rangle^{p}, \nabla\left(\frac{\langle X, X\rangle}{2}\right)^{q}\right\rangle=0 . \tag{4.8}
\end{equation*}
$$

By (4.1) and (4.4)

$$
\begin{align*}
& \left\langle P_{r} \nabla\langle X, N\rangle^{p}, \nabla\left(\frac{\langle X, X\rangle}{2}\right)^{q}\right\rangle \\
& \quad=\left\langle P_{r}\left[-p\langle X, N\rangle^{p-1} \sum_{j k} h_{j k}\left\langle e_{k}, X\right\rangle e_{j}\right], q\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} \theta_{c} X^{T}\right\rangle \\
& \quad=-p q\langle X, N\rangle^{p-1}\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} \theta_{c} \sum_{j k} h_{j k}\left\langle e_{k}, X\right\rangle\left\langle P_{r} e_{j}, X^{T}\right\rangle \\
& \quad=-p q\langle X, N\rangle^{p-1}\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} \theta_{c} \frac{\left|X^{T}\right|^{2}}{n} \sum_{j k} h_{j k}\left(P_{r}\right)_{j k} \\
& \quad=-p q\langle X, N\rangle^{p-1}\left(\frac{\langle X, X\rangle}{2}\right)^{q-1} \theta_{c} \frac{\left|X^{T}\right|^{2}}{n}(r+1) S_{r+1}, \tag{4.9}
\end{align*}
$$

if we choose e_{1}, \ldots, e_{n} such that, at a point, $\left\langle e_{k}, X\right\rangle=\left\langle e_{j}, X\right\rangle, \forall j, k$.
Now we use (4.2) and (4.9) in (4.8) to finish the proof of (a).
Proof of (b). For $c \neq 0$ choose $f=\langle X, N\rangle^{p}$ and $g=\theta_{c}^{q}$ in (3.7). Then

$$
\begin{equation*}
\int_{M^{n}}\langle X, N\rangle^{p} L_{r} \theta_{c}^{q}+\left\langle P_{r} \nabla\langle X, N\rangle^{p}, \nabla \theta_{c}^{q}\right\rangle=0 . \tag{4.10}
\end{equation*}
$$

By (4.4) and (4.6) we have

$$
\begin{align*}
\left\langle P_{r} \nabla\langle X, N\rangle^{p}, \nabla \theta_{c}^{q}\right\rangle & =c p q \theta_{c}^{q-1}\langle X, N\rangle^{p-1} \sum_{j k} h_{j k}\left\langle e_{k}, X\right\rangle\left\langle P_{r} e_{j}, X^{T}\right\rangle \\
& =c p q \theta_{c}^{q-1}\langle X, N\rangle^{p-1} \frac{\left|X^{T}\right|^{2}}{n} \sum_{j k} h_{j k}\left\langle P_{r}\right\rangle_{j k} \\
& =c p q \theta_{c}^{q-1}\langle X, N\rangle^{p-1} \frac{\left|X^{T}\right|^{2}}{n}(r+1) S_{r+1} . \tag{4.11}
\end{align*}
$$

Now use (4.7) and (4.11) in (4.10) to conclude the proof of (b) for $c \neq 0$. For $c=0$, (b) comes from (a) with $q=1$.

Proof of (c). Now we choose $f=(\langle X, X\rangle / 2)^{p}$ and $g=\langle X, N\rangle^{q}$ in (3.7) to obtain

$$
\begin{equation*}
\int_{M^{n}}\left(\frac{\langle X, X\rangle}{2}\right)^{p} L_{r}\langle X, N\rangle^{q}+\left\langle P_{r} \nabla\left(\frac{\langle X, X\rangle}{2}\right)^{p}, \nabla\langle X, N\rangle^{q}\right\rangle=0 . \tag{4.12}
\end{equation*}
$$

However, by (4.1) and (4.4) we have

$$
\begin{align*}
\left\langle P_{r}\right. & \left.\nabla\left(\frac{\langle X, X\rangle}{2}\right)^{p}, \nabla\langle X, N\rangle^{q}\right\rangle \\
& =-p q\left(\frac{\langle X, X\rangle}{2}\right)^{p-1}\langle X, N\rangle^{q-1} \theta_{c} \frac{\left|X^{T}\right|^{2}}{n} \sum_{j k} h_{j k}\left(P_{r}\right)_{j k} \\
& =-p q\left(\frac{\langle X, X\rangle}{2}\right)^{p-1}\langle X, N\rangle^{q-1} \theta_{c} \frac{\left|X^{T}\right|^{2}}{n}(r+1) S_{r+1} . \tag{4.13}
\end{align*}
$$

Therefore, (4.5) and (4.13) applied to (4.12) finish the proof of (c). We have thereby finished the proof of Theorem 1.

COROLLARY. Under the hypotheses of Theorem 1 , if $1 \leq p \leq n$, then

$$
\begin{aligned}
& \int_{M^{n}}\left(\langle X , N \rangle ^ { p } \left\{\left(\frac{\langle X, X\rangle}{2}\right)^{p-1}\right.\right. \\
& \left.\quad \times\left[\theta_{c}\left((n-r) S_{r} \theta_{c}+(r+1) S_{r+1}\langle X, N\rangle\right)-\frac{c}{n}(n-r) S_{r}\left|X^{T}\right|^{2}\right]\right\} \\
& \quad-\left(\frac{\langle X, X\rangle}{2}\right)^{p}+\left\{-\langle X, N\rangle^{p-1}\left[(r+1) S_{r+1} \theta_{c}\right.\right. \\
& \left.\left.\quad-\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right)\langle X, N\rangle-\left\langle\left(\nabla S_{r+1}\right)^{T}, X\right\rangle\right]\right\} \\
& \quad+\left[\langle X, N\rangle^{p}\left(\frac{\langle X, X\rangle}{2}\right)^{p-2} \theta_{c}^{2}(n-r) S_{r}\right. \\
& \left.\left.\quad-\langle X, N\rangle^{p-2}\left(\frac{\langle X, X\rangle}{2}\right)^{p}\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right)\right]\right) d M=0 .
\end{aligned}
$$

Proof. Subtract (c) from (a) in Theorem 1 with $1 \leq p=q \leq n$.
We observe that we could obtain the Corollary just using the self-adjointness of L_{r} given in (3.6) and the expressions of $L_{r}\langle X, N\rangle^{p}$ and $L_{r}\langle X, X / 2\rangle^{q}$ given in (4.5) and (4.2), respectively.

5. Applications

Here we prove Theorem 2 and other facts as applications of integral formulas.
We will use the fact that if M^{n} is compact and $H_{r+1}>0$ then

$$
\begin{equation*}
H_{r} \geq H_{r+1}^{r / r+1}, \quad 1 \leq r \leq n-1 \tag{5.1}
\end{equation*}
$$

with equality at umbilical points [16, lemma 1].

In the proof of Theorem 2 we will use that $W \neq \emptyset$ if and only if there exists a point $p_{0} \in Q_{c}^{n+1}$ such that $\langle X, N\rangle$ never vanishes. Thus, if $H_{r+1}>0$, also $H_{r}>0$ by (5.1) and, with $p=0, q=1$ and $r=0$ in Theorem 1 (b) we must have

$$
\begin{equation*}
\langle X, N\rangle<0 \tag{5.2}
\end{equation*}
$$

for $c \leq 0$ since in this case $\theta_{c} \geq 1$. For $c>0$, (5.2) also holds if we choose $-p_{0}$ instead of p_{0}, if necessary, because if $p_{0} \in W$ also $-p_{0} \in W$ and the corresponding support functions have opposite signs.

Proof of Theorem 2. We may assume that $H_{r+1}>0$ by a proper choice of the normal vector N. By using (3.1) and the self-adjointness of L_{r}, Lemma 2 gives that

$$
\begin{align*}
\int_{M}\{ & \left.-(r+2)\binom{n}{r+2} H_{r+2}+n\binom{n}{r+1} H_{1} H_{r+1}\right\}\langle X, N\rangle d M \\
& =-(r+1)\binom{n}{r+1} H_{r+1} \int_{M} \theta_{c} d M . \tag{5.3}
\end{align*}
$$

On the other hand, by using (5.1) and (5.2) in Theorem 1(b) with $p=0$ and $q=1$, we obtain

$$
H_{r+1}^{r / r+1} \int_{M} \theta_{c} d M \leq \int_{M} H_{r} \theta_{c} d M=-H_{r+1} \int_{M}\langle X, N\rangle d M .
$$

Substituting this in (5.3) we obtain

$$
\begin{align*}
& \int_{M}\left\{-(r+2)\binom{n}{r+2} H_{r+2}+n\binom{n}{r+1} H_{1} H_{r+1}\right\}\langle X, N\rangle d M \\
& \quad \geq(r+1)\binom{n}{r+1} H_{r+1}^{(r+2) / r+1)} \int_{M}\langle X, N\rangle d M . \tag{5.4}
\end{align*}
$$

Now we observe that if we denote

$$
c(r)=(n-r)\binom{n}{r},
$$

then

$$
\begin{aligned}
& (r+2)\binom{n}{r+2}=c(r+1), \\
& n\binom{n}{r+1}=\frac{n}{r+1} c(r)
\end{aligned}
$$

and

$$
(r+1)\binom{n}{r+1}=c(r) .
$$

Multiplying (5.4) by $(r+1)$ and using these equalities we get

$$
\int_{M}\left\{-(r+1) c(r+1) H_{r+2}+n c(r) H_{1} H_{r+1}-(r+1) c(r) H_{r+1}^{(r+2) /(r+1)}\right\}\langle X, N\rangle d M \geq 0 .
$$

Since $\langle X, N\rangle<0$ and this integrand is greater or equal to zero, with equality at umbilic points [1, p. 392], the theorem is proved.

THEOREM 3. Let M^{n} be a compact oriented Riemannian manifold and let $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion with constant $(r+1)$-mean curvature. If $c>0$, suppose further that $x\left(M^{n}\right)$ is contained in an open hemisphere. Then, W is non-empty if and only if x is r-stable.

Here r-stable means the following: M^{n} is a critical point of the functional

$$
J_{r}=\int_{M^{n}} F_{r}\left(S_{1}, \ldots, S_{r}\right) d M+\lambda V
$$

for all variations and the second derivative of J_{r} at M^{n},
$J_{r}^{\prime \prime}(f)=-(r+1) \int_{M^{n}} f\left\{L_{r} f+\left(S_{1} S_{r+1}-(r+2) S_{r+2}\right) f+c(n-r) S_{r} f\right\} d M$,
is non-negative for every normal variation $X: I \times M^{n} \rightarrow Q_{c}^{n+1}$ of M^{n} defined by $f N$ satisfying $\int_{M^{n}} f d M=0$. Here F_{r} is defined inductively:

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=S_{1} \\
& F_{r}=S_{r}+\frac{c(n-r+1)}{r-1} F_{r-2} \quad \text { for } \quad 2 \leq r \leq n-1
\end{aligned}
$$

λ is constant and

$$
V(t)=\int_{[0, t] \times M^{n}} X^{*} d Q
$$

with $d Q=$ volume element of Q_{c}^{n+1}. For $r=0$, this is the stability defined in [4].

Proof of Theorem 3. By the theorem in [3] if $c \neq 0$ or by theorem 2.1 in [1] if $c=0, x$ is r-stable if and only if $x\left(M^{n}\right)$ is a geodesic sphere. And by Theorem 2 above $x\left(M^{n}\right)$ is a geodesic sphere if and only if W is non-empty, proving the theorem.

Trivially, a geodesic sphere of center p_{0} in Q_{c}^{n+1} satisfies

$$
H_{r} \theta_{c}+H_{r+1}\langle X, N\rangle \equiv 0, \quad 0 \leq r \leq n-1
$$

where X is the position vector relative to p_{0}, since $H_{r}=\left(\theta_{c} / S_{c}\right)^{r}$, if we choose $N=-X / S_{c}$.

The next theorem establishes the converse. A proof of the Euclidean version is given in [8].

THEOREM 4. Let $x: M^{n} \rightarrow Q_{c}^{n+1}$ be an isometric immersion of a connected, compact and oriented Riemannian manifold M^{n} and $p_{0} \in Q_{c}^{n+1}$ relative to which

$$
H_{r} \theta_{c}+H_{r+1}\langle X, N\rangle
$$

does not change sign for some $0 \leq r \leq n-1$. If $c>0$ assume that $x\left(M^{n}\right)$ is contained in an open hemisphere of Q_{c}^{n+1} centered at p_{0}. Then $x\left(M^{n}\right)$ is a geodesic sphere.

Proof. From the particular case of Theorem 1 given in (1.3), we obtain, for any c,

$$
\begin{equation*}
H_{r} \theta_{c}+H_{r+1}\langle X, N\rangle \equiv 0 \tag{5.5}
\end{equation*}
$$

We first prove that $H_{r+1}>0$. Clearly, for $c \leq 0$ we always have that

$$
\begin{equation*}
\theta_{c}>0 \tag{5.6}
\end{equation*}
$$

If $c>0,(5.6)$ also holds by the hypothesis on p_{0}.
From the convexity of the ambient space and the compacity of M^{n} we may choose N to have an open set U where all eigenvalues of the second fundamental form of x are positive. Hence, $H_{r+1}>0$ on U and we assume that it is the largest subset of M^{n} with such a property. We will show that $U=M^{n}$.

By (5.5) and (5.6),

$$
\langle X, N\rangle<0 \quad \text { on } \quad U,
$$

since, by (5.1), also $H_{r}>0$ on U.
On the other hand, by applying (5.1) to (5.5) we get, on U

$$
\begin{aligned}
0 & =H_{r} \theta_{c}+H_{r+1}\langle X, N\rangle \\
& \geq H_{r+1}^{r / r+1} \theta_{c}+H_{r+1}\langle X, N\rangle \\
& =H_{r+1}^{r / r+1}\left(\theta_{c}+H_{r+1}^{1 / r+1}\langle X, N\rangle\right)
\end{aligned}
$$

Hence

$$
\theta_{c}+H_{r+1}^{1 / r+1}\langle X, N\rangle \leq 0 \quad \text { on } \quad U
$$

By continuity, also

$$
\theta_{c}+H_{r+1}^{1 / r+1}\langle X, N\rangle \leq 0
$$

on the closure \bar{U} of U in M^{n}. Since by (5.6) θ_{c} is positive, also H_{r+1} must be positive on \bar{U}. This proves that $U=\bar{U}$ and since M^{n} is connected we then have $U=M^{n}$. Therefore, $H_{r+1}>0$ on M^{n}.

Now, use (3.1) and (5.5) in Lemma 1 to obtain

$$
L_{r} \theta_{c} \equiv 0 \text { on } M^{n}, \text { if } c \neq 0
$$

and

$$
L_{r}|X|^{2} \equiv 0 \text { on } M^{n}, \text { if } c=0
$$

Because $H_{r+1}>0$ on M^{n}, we have that L_{r} is elliptic. Therefore,

$$
\theta_{c}=\text { const. on } M^{n}, \text { if } c \neq 0
$$

and

$$
|X|^{2}=\text { const. on } M^{n}, \text { if } c=0
$$

It follows then that in any case $x\left(M^{n}\right)$ is a geodesic hypersphere in Q_{c}^{n+1}.

References

1. Alencar, H., do Carmo, M. and Rosenberg, H.: On the first eigenvalue of the linearized operator of the r-th mean curvature of a hypersurface, Ann. Global Anal. Geom. 11 (1993), 387-391.
2. Alencar, H. and Frensel, K.: Hypersurfaces whose tangent geodesic omit a nonempty set, in Lawson, B. and Tenenblat, K. (eds), Differential Geometry, Pitman Monographs, Vol. 52, Longman, Essex, 1991, pp. 1-13.
3. Barbosa, L. and Colares, A. G.: Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), 277-297.
4. Barbosa, J. L. M., do Carmo, M. P. and Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197(1) (1988), 123-138.
5. Bivens, I.: Some integral formulas for hypersurfaces in a simply connected space form, Proc. Am. Math. Soc. 88(2) (1983), 113-118.
6. Chern, S. S.: Some formulas in theory of surfaces, Bol. Soc. Mat. Mexicana 10 (1953), 30-40.
7. Felipe, L. H. G.: On compact hypersurfaces immersed in a space form, Matemática Contemporânea 9 (1995), 75-90.
8. Fontenele, F.: On the Minkowski integrands, preprint, unpublished.
9. Gardner, R.: The Dirichlet integral in differential geometry, in Chern, S. S. and Smale, S. (eds), Global Analysis, Proc. Symp. Pure Math., Vol. 15, AMS, Providence, RI, 1970, pp. 237-245.
10. Heintz, E.: Extrinsic upper bounds for λ_{1}, Math. Ann. 280 (1988), 389-402.
11. Hsiung, C.-C.: Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286-294.
12. Hsiung, C.-C.: Some integral formulas for closed hypersurfaces in Riemannian space, Pacific J. Math. 6 (1956), 291-299.
13. Katsurada, Y.: Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. Mat. Pura Appl. 57 (1962), 283-293.
14. Kohlman, P.: Minkowski integral formulas for compact convex bodies in standard space forms, Math. Nachr. 166 (1994), 217-228.
15. Korevaar, N.: Sphere theorem via Alexandrov for constant Weingarten curvature hypersurfaces. Appendix to a note of A. Ros, J. Differential Geom. 27 (1988), 221-223.
16. Montiel, S. and Ros, A.: Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in Lawson, B. and Tenenblat, K. (eds), Differential Geometry, Pitman Monographs, Vol. 52, Longman, Essex, 1991, pp. 279-296.
17. Rosenberg, H.: Hypersurfaces of constant curvature in space forms, Bull. Sc. Math. 2e série, 117 (1993), 211-239.
18. Rund, H.: Integral formulas on hypersurfaces in Riemannian manifolds, Ann. Mat. Pura Appl. 88 (1971), 99-122.
19. Reilly, R.: Extrinsic rigidity theorems for compact submanifolds of the sphere, J. Differential Geom. 4 (1970), 487-497.
20. Reilly, R.: Variational properties of functions of the mean curvature for hypersurfaces in space forms, J. Differential Geom. 8 (1973), 465-477.
21. Shahin, J. K.: Some integral formulas in Euclidean space, Proc. Am. Math. Soc. 19 (1968), 609-613.
22. Simon, U.: Minkowskische Integralformeln und ihre Anwendungen in der Differentialgeometrie im Großen, Math. Ann. 137 (1967), 307-321.

[^0]: * Authors' research is partially supported by CNPq, Brazil.

