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ABSTRACT. Let Mn be a compact hypersurface of a sphere with constant mean 
curvature H. We introduce a tensor q5, related to H and to the second 
fundamental form, and show that if 1012 < BH, where BH 7 0 is a number 
depending only on H and n, then either kkI2 = 0 or 1012 BH . We also 
characterize all Mn with 1012 =H B 

1. INTRODUCTION 

(1.1) Let Mn be an n-dimensional orientable manifold and let f: Mn 
Sn+1(1) c Rn+2 be an immersion of M into the unit (n + 1)-sphere Sn+l(1) 
of the euclidean space Rn+2 . Choose a unit normal field q along f, and denote 
by A: TpM -* TpM the linear map of the tangent space TpM, at the point 
p e M, associated to the second fundamental form of f along a, i.e., 

(AX, Y) = (VxY, t/) 

where X and Y are tangent vector fields on M and V is the connection of 
S+ I (1) . A is a symmetric linear map and can be diagonalized in an orthonor- 
mal basis {el, ..., en} of TpM, i.e., Aei = kiei, i = I, ..., n. We will 
denote by H - 1 Phi ki the mean curvature of f and by IAl2 = Ei k2. 

When f is minimal (H = 0) the following gap theorem is well known. 

(1.2) Theorem. Let Mn be compact and f: Mn -* Sn+l(l) be a minimal 
hypersurface. Assume that IAl2 < n, for all p E M. Then: 

(i) Either IAI2 = 0 (and Mn is totally geodesic) or IAl2 _ n . 
(ii) IAl2 =_ n if and only if Mn is a Clifford torus in Sn+l(l), i.e., Mn is a 

product of spheres Snl (ri) X Sn2(r2), n, + n2 = n, of appropriate radii. 

(1.3) Remark. The sharp bound (i) is due to Simons [S]. The characterization 
given in (ii) was obtained independently by Chem, do Carmo, and Kobayashi 
[CdCK] and Lawson [L]. The result in (ii) is local. 

Attempts have been made to extend the above result to hypersurfaces with 
constant mean curvature H (see, e.g., Okumura [0]), but as far as we know no 
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sharp bound has yet been found. The purpose of this paper is to describe such 
a sharp bound and characterize the hypersurfaces that appear when the bound 
is reached. 

For that, it is convenient to define a linear map 0: TpM -* TpM by 

(q+X, Y) = H(X, Y) - (AX, Y). 

It is easily checked that trace q = 0 and that 

2=1 (ki-kj)2, i,j= 1, ...,n, 
i2n 

so that 1bI2 = 0 if and only if M is totally umbilic. 
It turns out that 0 is the natural object to use when extending the above 

theorem to constant mean curvature. In fact, Theorem 1.5 below can be proved. 
We need some notation. An H(r)-torus in Sn+1(1) is obtained by consid- 

ering the standard immersions Sn-I(r) c Rn, S1(v1 -i-2) c R2, 0 < r < 1, 
where the value within the parentheses denotes the radius of the corresponding 
sphere, and taking the product immersion Sn -I(r) x S1 ( 1 -i-2) . Rn x R2. 
By the choices made, the H(r)-torus turns out to be contained in Snf+l (1) and 
has principal curvatures given, in some orientation, by 

1-J _r-2 r 
(1.4) k=. =kn-I= r kn V= r-2' 

or the symmetric of these values for the opposite orientation. 
Let Mn be compact and orientable, and let f: Mn , Sn+ I (1) have constant 

mean curvature H; choose an orientation for M such that H > 0. For each 
H, set 

2 n(n -2) H n(2 + 1), PH(X) = X2 + n - x - n(H2 

and let BH be the square of the positive root of PH(x) = 0. Notice that for 
H=O, BO=n. 

(1.5) Theorem. Assume that 1k12 < BH for all p E M. Then: 
(i) Either 1I2 = 0 (and M is totally umbilic) or 1012 =_ BH. 

(ii) 1012-=BH if and only if: 
(a) H = O and Mn is a Clifford torus in Sn+I(1). 
(b) H 5$ 0, n > 3, and Mn is an H(r)-torus with r2 < nn. 

(c) H$ O. n = 2, and Mn is an H(r)-torus with r2 54 n-. 

(1.6) Remark. As it will be seen in the proof, part (ii) of Theorem (1.5) is 
again a local result. 

(1.7) Remark. It is an interesting fact that not all H(r)-tori appear in the 
equality case for n > 3, but only those for which r2 < (n - 1)/n (it can be 
checked that if we orient those H(r)-tori for which r2 > (n - 1)/n in such a 
way that H > 0 then 1bI2 > BH). This has to do with the fact that the term 
which contains H in the equation PH(x) = 0 vanishes when n = 2. Thus, if 
H :$ 0, the equation defining BH is invariant by a change of orientation if and 
only if n = 2. 
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(1.8) Remark. In the minimal case, Theorem (1.2) can be extended to higher 
codimensions (see [CdCK]). In her doctoral dissertation of IMPA, Walcy Santos 
has also been able to extend Theorem (1.5) to higher codimensions (for the 
precise statement in this case, see [Sa]). 

2. PROOF OF THEOREM (1.5) 

(2.1) We first compute the Laplacian AO of 0b. We first observe that given 
a Riemannian manifold M and a symmetric linear map on the tangent spaces 
of M that satisfy formally the Codazzi equation, Cheng and Yau [CY] have 
already computed such a Laplacian. This turns out to be the case for X, and 
the result of [CY] in our context can be described as follows. 

Let {ei, ... , e"} be an orthonormal frame which diagonalizes 0 at each 
point of M, i.e., be1 = puej, and let V be the induced connection on M. 
Then [CY, p. 198] 

(2.2) 
1 

A1012 = 1-Vk12 + E 4ui(tro)ii + 2 Rijij (i _ yj)2 
i i,j 

where Rijij is the sectional curvature of the plane {ei, ej}. 
We first compute the last term on the right-hand side of (2.2). By the defini- 

tion of q, yi = H - ki and, by Gauss's formula, 

Rijij = 1 + kikj = 1 + #juu-H(i + luj) + H2. 

We now use a result of Nomizu and Smyth [NS, p. 372] which implies, since 

trq = 0. that 

2 Z(I + Uu1j)(u-, 
_ 

sj)2 = nzU2 

Therefore, since EZi1j(u - ,Uj)2 = 2nJq$2, we obtain 
(2.3) 

2 ,Rijij(,uli -_,Uj)2 = n E Hi2-(ai) 

- 2/,(h+IJj)(JUk _lj)2 + H2 
i,j i,j 

= nj1,12 - 1k14 + nH21jq12 - H (,U + ,y)(#i j2 -A 
I,' 

On the other hand, since Eiui = 0, it is easily checked that 

(2.4) 2Z(IUi + /Uj)(,i-,_j)2 = n ,U3. 

It follows from (2.3) and (2.4) that (2.2) can be written as 

(2.5) 1AJO12 = 1VO12 - 1014 + nkbl2 + nH21012 - nHZP!?. 

We want to estimate Ej,2 . For that, we use the following lemma, the 
inequality case of which is stated in Okumura [0]. 
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(2.6) Lemma. Let yi, i = 1, ... , n, be real numbers such that >i ,ui = 0 and 

Ei2,l = fl2, where /3 = const > O. Then 

n -2 fl 3 < E Ai3 < 
n - 

2f133 V n ~~(n n~(n-1 

and equality holds in the right-hand (left-hand) side if and only if (n - 1) of the 
fui's are nonpositive and equal ((n - 1) of the ,i's are nonnegative and equal). 

Proof of the lemma. We can assume that J8 > 0, and use the method of La- 
grange's multipliers to find the critical points of g = >i,2 subject to the 
conditions: Ei ,ui = 0, E i2 = fl2. It follows that the critical points are given 
by the values of ,ii that satisfy the quadratic equation 

/I-A) i- a=O, i=1,...,n. 

Therefore, after reenumeration if necessary, the critical points are given by: 

81 =k12 = * =Up=a > O ,Ip+1 =Up+2 =Un= -b < 0. 

Since, at the critical points, 

f2 = EZ = pa2+ (n -p)b2, 

0 = i=pa - (n - p)b, 

g = ,= pa3 -(n - p)b3 

we conclude that 

2 n - b2- P /32 g n -Pa P= f2. 
pn (n -p)nn n 

It follows that g decreases when p increases. Hence g reaches a maximum 
when p = 1, and the maximum of g is given by 

a3 -(n - 1)b3 ((n - 1)b)3 -(n - 1)b3= (n - 2)n(n - 1)b2b 
n-2 3 

Vn(n- 1)/3 

Since g is symmetric, this proves the lemma. 

(2.7) Remark. For later use, it is convenient to observe from the proof that 
the equality holds in the right-hand side if and only if (n - 1) pi's are of the 
form -b = -(1/n(n - 1))1/2fi and the remaining one is a = ((n - 1)/n)!2! ). 

(2.8) We return to the proof of Theorem (1.5). By using Lemma (2.6) in (2.5), 
we obtain 

!Al1aI2 > IV012 - 1014 + n(H2 + 1)Iq12 - n(n - 2) HIq$13 
2 Vn01 + |+| ( 10l /z x~ + +n(n- 1)) 

-IVOI2+ I012 (1I12 - -2)H1q$ + n(H 2 + 1)) 
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Integrating both sides of the above inequality, using Stokes' theorem and the 
hypothesis, we conclude that 

0o> JA 2 + IM 12 _1 (nl2-- n -2) Hk + n(H2+ 1)) 0. 

Thus IV01I2 0 and either 1I12 = 0 or 1012 = BH. This proves part (i) of 
Theorem (1.5). 

We now consider part (ii). Notice first that if 1012 -= BH, the right-hand side 
of inequality (2.8) vanishes identically irrespective of the compactness of M. 
Since this is all that we will use, the remaining part of the argument is local. 

If H = 0, the theorem reduces to Theorem (1.2) which gives (ii)(a). 
If H # 0, we conclude that Vq$ = 0 and that equality holds in the right- 

hand side of Lemma (2.6). It follows that ki = const and (n - 1) of the kid's 
are equal (see, e.g., [CdCK, p. 67]). After reenumeration if necessary, we can 
assume that 

k1 = k2= ...= kn-, k, ? kn, ki = const. 

In this situation, if n > 3, a theorem of do Carmo and Dajczer [dCD, p. 701] 
implies that Mn is (contained in) a rotation hypersurfaces of Sn+1 (1) obtained 
by rotating a curve of constant curvature. It follows that Mn is an H(r)-torus. 

To identify which H(r)-tori do appear, we first observe that the equality case 
of Lemma (2.6) gives (with the enumeration above): 

Ain 1 19 n- =_ _2 =_n- = 

Thus 

knk, = H - 01 ( 1 + 

hence, since 1012 = BH, 

nknk, = nH2- _ 2- n(n-2) = -n 

that is, knk1 = -1. On the other hand, from 

kn = H- = kn + (n-l)kli _ n ~n 
we conclude that 

(n - 1)kn - (n - 1)kl = -nun 

and, since nu > 0, we obtain that kn < k1 . Because knk, = -1, this implies 
that kn < 0. It follows that the oriented H(r)-torus selected by the equality 
case of Lemma (2.6) is given by (1.4). Since its mean curvature 

(n - 1) - nr2 

nr l1r2 

is positive, we must have r2 < (n - 1)/n. This completes the proof of case (b) 
in (ii). 
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To prove finally the case (ii)(c), we observe that M2 C S3(1) is an isopara- 
metric surface in S3 (1) which is known to be either totally umbilic or an H(r)- 
torus. Since 1bI2 :$ 0, M2 is an H(r)-torus. By the above argument, we see 
that k2k, = -1. Now, however, because the equality case of Lemma (2.6) 
gives no additional information, we can have both cases: k2> 0, k1 < 0 and 
k2 <0 . kA > 0. Thus, the (positive) mean curvature can be either 

_ (n -1) -nr2 nr2 - (n - 1) 
H =- or H =n=2 

nr 1-r2 n r 2 2, 

and all r2 :$ nn will occur. This concludes the proof of (ii)(c) and of the 
theorem. 

3. FURTHER REMARKS 

(3.1) Theorem (1.5) raises the following question: Consider the set of hyper- 
surfaces of Sn+l(1) with H = const and 101 = const. Is the set of values of 
101 discrete? For minimal hypersurfaces, this question was raised in [CdCK], 
and even in this simple case it was shown to be a hard question. For n = 3 
and H = 0, a significant contribution was given by Peng and Terng [PT] who 
showed that if 3 < 1012 < 6, 101 = const, then 1012 = 6 and M3 is a minimal 
isoparametric hypersurface of S4(1) with three distinct principal curvatures. 

The result of Peng and Terng was extended to hypersurfaces of S4(1) with 
constant mean curvature H by Almeida and Brito [AB]. They proved that if 
1bI2 = const and 1012 < 6 + 6H2, then M3 is an isoparametric hypersurface 
of S4(1) with constant mean curvature H; furthermore, if 4 + 6H2 < 1bI2 < 

6 + 6H2, then 1012 = 6 + 6H2 and M3 has three distinct principal curvatures. 
The result of Almeida and Brito solves the above question for n = 3 and 

1012 < 6 + 6H2 and also throws some light on what happens to the H(r)-tori 
when H :$ 0 and r2 > 3: they are all in the interval BH < 1I2 < 4 + 6H2 (cf. 
Remark 1.7). 
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