
 MINIMAL HYPERSURFACES OF R2m
 INVARIANT BY SO(m) x SO(m)

 HILARIO ALENCAR

 ABSTRACT. Let G = SO(m) x SO(m) act in the standard way on Rm x Rm
 We describe all complete minimal hypersurfaces of Rm\{O} which are invariant
 under G for m = 2, 3. We also show that the unique minimal hypersurface
 of R2m which is invariant under G and passes through the origin of R2m is
 the minimal quadratic cone.

 1. INTRODUCTION

 Let G = SO(m) x SO(m) act in the standard way on R2m x R2m. The orbit
 of this action which passes through the point (X, Y) E Rm x Rm is given by
 Sm1(IXI) x Sm (IYI), and the orbit space R2m/G can be represented by

 7r(R2m) = {(x, y) E R2; x > 0, y > 0}1

 where 7r: Rm x Rm -* R2 is defined by 7i(X, Y) = (IXI, IYI).
 Let M2m- I be a minimal hypersurface in R2m which is invariant under G.

 Using the methods of equivariant geometry (see [2]) we will describe the above
 hypersurface by studying its generating curve in 7 (R2m) .

 The generating curve of M2m-I has one of the following types:

 (a) the generating curve intersects perpendicularly one of the semi-axes of
 the orbit space;

 (b) the generating curve does not intersect the boundary of the orbit space;
 (c) the generating curve passes through the origin of the orbit space.

 In case (c), the corresponding hypersurface passes through the origin of R22m
 and has a unique singularity at that point. This case can be completely charac-
 terized by the following result, which we will prove in ?4 (see Theorem 4.1).

 Let M2m-l be a minimal hypersurface of R22m which is invariant under G
 and passes through the origin of R2m . Then M2m-l is the minimal quadratic
 cone

 C = {(X, Y) E Rm x Rm; IX12 = Iy12}.
 This generalizes, for arbitrary m, a result of Barbosa-do Carmo (see [3]) for
 m = 2.

 1980 Mathematics Subject Classification (1985 Revision). Primary 53C40; Secondary 53C42.
 Key words and phrases. Minimal hypersurface, orbit space, invariant hypersurface, minimal

 quadratic cone.
 The author was partially supported by CNPq, at IMPA, Brazil.

 129



 130 HILARIO 

 yk yA

 xy

 x~y

 l x x

 FIGURE (a) FIGURE (b)

 For cases (a) and (b), the hypersurfaces are regular. In the case-s m = 2, 3, we
 have been able to obtain a rather complete description of the generating curves
 which are sketched in Figures (a) and (b), corresponding to cases (a) and (b),
 respectively (we will return to the case m > 4 at the end of this Introduction).
 This leads to the main result of this paper.

 (1. 1) Theorem. Let M2m -1I, m = 2,~ 3, be a complete minimal hypersurface
 in R 2m\{ O} which is invariant under G. Then:

 (a) either M2m~-1 is embedded and has the topological type of Rm x Sm-I,
 or

 (b) M2m~-1 intersects itself infinitely often (i.e., the intersection set has in-
 finitely many connected components) and has the topological type of
 R x Sm-1 y sm-1.

 Furthermore, in cases (a) and (b), the hypersurfaces intersect the cone C out-
 side any compact set and it is arbitrarily close to C.

 The paper is organized as follows. In ?2, we introduce some results about
 the relationship between the minimal hypersurfaces of R2m which are invariant
 under G and its generating curves in G(R2m). These curves satisfy the following
 second-order differential equation (see [8, Proposition 1]):

 x'(sy"(s) - x"(s)y'(s)

 (1.2) =(M _ 1)[(X/(S))2 + (y'(S))2] X's Y'(S))

 We will use an idea of Bombieri, De Giorgi, and Giusti (see [4]) and introduce
 parameters (see (2.3)) in the above equation which are invariant by homotheties.
 This transforms (1.2) in a vector field in the plane crq/ (see (2.7)). We then
 characterize the singularities of this vector field and we relate the trajectories of
 the field to the solutions of equation (1.2).

 In ?3, by using the Stable and Unstable Theorem and the existence of a
 Liapounov function, we obtain a complete description of the trajectories of the
 above vector field for m = 2, 3.

 We prove that the trajectories of this field that start at saddle points and end
 at focus points are related to the solution curves of type (a). By using the fact
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 that such curves satisfy the differential equation (1.2), we prove that they have
 the properties sketched in Figure (a).

 Similarly, the trajectories of the vector field that start and end at focus points
 are related to the solution curves of type (b). In this case, we first look at the

 intersection points of the trajectories of the vector field with the lines a + V/ =
 2k7r and y, - a = (2j + 1)7r, k and j integers. We show that such intersection
 points correspond to the maximum and minimum of the angle that the position
 vector of the generating curve makes with x-axis (see Proposition 3.3); through
 a careful analysis (see Lemma 3.6), we then obtain that the curves of type (b)
 are self-intersecting curves.

 Finally in ?4, we prove Theorem 4.1. The idea of the proof is to use the power
 series of the solution of equation (1.2). By using induction on the coefficients
 of the series, we prove that the unique solution which passes through the origin
 is the bisector of the orbit space.

 For m > 4, the vector field exhibits other types of singularities and our
 method for the analysis of the trajectories does not seem to apply. However, by
 using techniques similar to those of the proof of part (a) of Theorem 1.1, we
 have proved in [1] (see Theorem 5.1) that:

 For m > 4, the complete minimal hypersurfaces of R22m _ {O}, which are
 invariant by SO(m) x SO(m) and have the topological type of Rm x Sm-1, are
 embedded and foliate R2m\C. In particular, such hypersurfaces are stable.

 This is part of my Doctoral Dissertation at IMPA. I want to thank M. do
 Carmo for his orientation. Thanks also are due to G. Thorbergsson, M. Alves,
 and P. Carriao for conversations.

 2. PRELIMINARIES

 The solution curves of (1.2) are invariant by homotheties. Therefore, since
 minimal hypersurfaces are again minimal after homotheties, we can follow the
 method developed in [4] for the study of the equation (1.2). Observe that if a
 curve (x, y) is a solution of (1.2), then the curve (y, x) is also a solution.

 For completeness, we will now present this method.
 We can suppose without loss of generality that the solutions of (1.2) are

 parametrized by arc length. Hence, equation (1.2) can be written as

 (2.1) x'(s)y"(s) - x"(s)y'(s) = (m- 1) (Xy(s) Y(s).

 Let t be a solution curve of (2.1). Define functions 0(s) and (s) by

 Cos (P(s) = x(s) sin (0 (s) = y(s)
 (2.2) [x(s)]2 + [y(S)]2 [x(s)]2 + [y(s)]2

 cos 0(s) = x'(s), sin 0(s) = y'(s),

 and introduce the parameters:

 ____ y' (s)
 (2.3) (p(s) = arctan y(s) 0(s) = arctan X(s)

 which are invariant by the homotheties:
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 By using (2.3) and (2.2) we obtain

 (2.4) (0' = I sin( - (o)
 Ix- 2 +y2

 Since I satisfies (2.1), we obtain from (2.3) and (2.2) that

 6'=2 m- I cos(6+ ()
 x2+/y sin(2(o)

 Hence, by the above expression and (2.4), we have the following relation:

 (2.5) -2(m - 1)(' cos((o + 0) + 6' sin(2(o) sin(6 - (0) = 0.

 Setting

 (2.6) =60 - 3 o+.72, = 0 + 7-
 we obtain

 =/ - cr + 7 0 3V + a + 7t

 Therefore,

 -2(m - l) ('cos(( + 0) = (m - 1) (V' - a7') sin V,

 6' sin 2 sin(O -)= (3 ' + a)(sin V + sin a).
 Thus, by using (2.5), we obtain the following vector field in the plane in the

 coordinates (a, i,'):

 (d 2 sin a - (2(m - 1) + 3) sin ,
 (27- 1 sin a - (2(m - 1) - I) sin V/.

 Through the study of the vector field (2.7) we will describe some properties
 of the differential equation (2.1).

 We will first characterize the singular points of the above vector field. The
 terminology we use here can be found in [6].

 The singular points of (2.7) are of the form (v, ig) = (ji7, k7), j, k E Z.
 Since the sine function is periodic, it suffices to study the following singular

 points: (O, 0), (7r, 7,), (-7, -7,), (- 7, 7r), and (O, -7r).
 By writing the vector field (2.7) as

 X(aT, V/) 3 - sin aT - (2(m - 1) + 3) sin V/, I sin aT - (2(m - 1) - 1) sin V/)
 and by denoting by DX(p) the differential of the mapping X at p, we obtain
 that the eigenvalues of the matrix DX(O, 0) are:

 Al(O, 0) = I 2 + 1 A2(0 0) I - 2m - V
 where A = 4(m - 1)2 - 12(m - 1) + 1.

 In the same way, we obtain for the eigenvalues of DX at the other singular
 points:

 Al (7r, 7r) = Al1 (-7r, -7r) = Al1 (-7r, 7r) = Al (7, -7r) 2m - I + VA )~~i(~~r, ~~) ~~ - ~2m -1+ VA-
 2(7, 7) = A2(-, -r7) = A22(-r, 7r) = A2(7 - = m -

 Al (7r, 0) =Al (-7r, 0) =2, A2(7r, 0) = A2(-7, 0) = 2 - 2m,
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 If we consider m to be a nonnegative continuous parameter, we can write:

 A > 0 if m)> 5+ Vor m< 2-Xv2; 2 2

 A\<0 if 2-V2 - < m< : +X;~
 2 2 A=O if m=~ V2orm=2+VX.

 We will only be interested in the characterization of the singular points for
 the cases where m is an integer greater than or equal to 2.

 First of all, we characterize the singular points whose eigenvalues depend on
 A with m =2, 3. Inthis case, A<O.

 Thus, l (0, 0) and A2(O, 0) are conjugate complex numbers with nega-
 tive real part, that is, (O, 0) is a stable focus point. In addition, A (7r, 7r) =

 Al (-7r, -7r) = Al (-7r, 7) = Al (7r, -7r) and A2(7r, 7r) = 2(-7t, -7r) = 2(-7t, 7r)
 = A2(7r, -7r) are also conjugate complex numbers. But in this latter case the
 real part is positive, that is, (7r, 7r), (-7r, -7r), (-7r, 7r), and (7r, -7r) are
 unstable focus points.

 Now we analyze the singular points whose eigenvalues do not depend on A.

 Since m > 2, we have that

 Al (7, ?) = Al (-7, ?) > ? > A2(7, ? ) = A2(-7 ?),

 AI (?, 7) = AI(?A -7f) > ? > A2(O, 7) = A2(O, -7f);

 in other words, (7r, 0), (-ir, 0), (O, 7r), and (O, -Xr) are saddle points.
 In order to translate the behavior of (2.7) into the behavior of equation (2.1),

 we need the following lemma.

 (2.8) Lemma. Let (x(s), y(s)) be a solution of(2.1) and let (a(s), i/(s)) be a
 trajectory of (2.7) in the plane a Vy, where v(s) and y/(s) are given by equation
 (2.6). Then we have the following properties:

 (i) =7r, y =O -X > O, y = O, X' > O, y' > O;

 (ii)~ ~ a =W x =y; > =, -N = a'> ; (iii) oa=ig=Ox=y;O a=-i=y'=O;
 (iV) Or 0, 0 < Y/< 7-y > X;
 (V) T = O, -7r < V/ < O =W y < X ;
 (Vi) 0 < V/ < a <r X 0 < ( < 7- > y < X.

 Proof. (i), (ii), and (iii) follow from (2.6) and (2.2).
 In order to prove (iv), set a = 0 in (2.6) to obtain

 (2.9) 7+

 By (2.9) and since 0 < VI < 7r, we obtain tan( = 1 + 2c, where e -
 tan(yV/4)/(1 - tan(qi/4)) > 0. By using (2.3) we can conclude Y = 1 + 2c, X

 that is, y > x. This proves (iv).

 Similarly, taking into account that -7r < V/ < 0 implies e < 0, we can prove
 (v).

 Finally, (vi) follows from (2.6) and (2.5). In fact, by using (2.6) together

 with the hypothesis, we obtain 0 < a - y/ = -4(p + Xr < 7z , that is, 0 < 0 <4
 So, from (2.3), 0 < y < 1. This concludes the proof of the lemma. O
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 3. PROOF OF THEOREM 1.1

 In order to prove Theorem 1.1, we characterize the behavior of the generating

 curves in cases (a) and (b) of the theorem. We will need some auxiliary results.

 (3.1) Lemma. Let m = 2, 3. There exists a trajectory y(s) in the plane a V/
 of the vector field (2.7), with the following properties:

 (i) y(-00) = (7r, 0), y(+00) = (0, 0);
 (ii) The straight lines a = 0, y/ = 0, a = V/, and a = -y/ intersect the

 curve y infinitely often.

 Proof. We analyze the behavior of the vector field in a yi determined by (2.7) on

 the following segments: li = {0 < a <ir; y' = 0}, 12={0< y/<7;a=0?}
 3 = {0 < y/ = - + 2 < 7 }, and l = {0 < / = a + X<7r

 On li, we have

 ds - - sina < O, ds = I sina > 0.

 On 12, we have

 du / 2(m-1)+ 3sin<0, d 2(m-l)- Isin_/<0.
 ds m2 dsiyi2

 On 13, we have

 d (3cosy + (2(m-1)- I sinVI < 0, ds -2csl \/

 d (cos - 2(m - 1) - sin Y/ < 0. ds -KO/ Km2!

 Finally on l, we have

 ds = 2(m - 1) sina < 0, ds =2(m - 1) sina < 0.

 Therefore, l is a trajectory of the vector field (2.7).

 Observe that if (a(s), yi(s)) is a trajectory of (2.7), so is (-a(s), -YI(s)).
 Therefore, we have a sketch (see Figure 3.1) of the behavior of the vector field

 on the segments 11, 12, 13, l and on the segments that are symmetric to these
 relative to the origin: 1j, 1l7, 1-, and l- .

 Now, let Es(p) and EU(p) be the eigenspaces associated to the negative and
 positive eigenvalues, respectively, of DX(p) at the singular point p. Since
 the slope of EU(7r, 0) is -1/4(m - 1) + 3, we have, by using the Unstable
 Manifold Theorem (see [9, p. 75]), that\there is a trajectory y with the following

 properties: the initial segment of y is between 11 and 13 and y (-oo) = (7r, 0) .
 In addition, the curve y is always contained in the region R bounded by

 13, {2 < V < 7(; q = 0} 1 ljX {-7r < < - 2'; a = 0}, and l- (see Figure 3.1).

 We will now prove that y(+oo) = (0, 0). Let

 V(a, yi)= sin - +sin-
 4(m - 1) + 3 2 2'

 where (a, V) E (-7r, 7r) x (-7r, 7r). Note that V(0, 0) = 0, V(u, V) > O for
 every (v, V/) :A (0, 0), and dv < O for every (a(s), V (s)) #& (O, 0), that is, V
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 is a strict Liapounov function for the singularity (0, 0) . Thus, there exists no
 closed orbit in R.

 On the other hand, since the slopes of EU(O, 7,), Es(-7r, 0), EU(O, -7,),
 and Es(7r, 0) are all equal to 1, and the slopes of Es(O, 7r), EU(-7r, 0),
 Es(O, -7r), and EU(7r, 0) are all equal to -1/4(m - 1) + 3, we obtain, by
 using the Stable and Unstable Manifolds Theorem (see [9, p. 75]), that 1, 1-,
 y-, and y are the unique trajectories contained in R and in the stable or
 unstable manifolds of the points (0, 7,), (-7r, 0), (0, -7r), and (7r, 0). But,
 by the Jordan Curve Theorem, y cannot accumulate in 1, 1-, or y-. Then,
 by using the Poincare-Bendixon Theorem (see [6, Theorem 1.2, p. 54]), we have
 that y(+oo) = (0, 0). This proves (i) of the lemma.

 The proof of (ii) follows from the fact that (0, 0) is a focus point. O

 By using the above lemma, the fact that X(a + 7r, V/ + 7r) = -X(a, VI),
 the periodicity of the singular points, and the Poincare-Bendixon Theorem, we
 can describe completely the phase plane of the vector field (see Figure 3.2). In
 particular, there is a trajectory a in the plane a VI of the vector field (2.7) such
 that a(-oo) = (7r, 7r) and a(+oo) = (0, 0).

 Through the trajectories y (see Lemma 3.1) and a we will describe the
 behavior of the solution curves of (2.1).

 The trajectory y (s) corresponds to a family {y, (s)}, A > 0, -oo < s < oo,
 of homothetic curves, parametrized by arc length in the plane xy, which are

 solutions of (2.1). Each curve belonging to the family {Iy,} has, by Lemmas 3.1
 and 2.8, the initial point in (xo, 0), xo :$ 0, and is perpendicular to the axis
 y = 0 at this point. Thus, by Proposition 1 in [7], the curve y, is completely
 determined by initial conditions at any point of the region {(x, y); x > 0,

 Y > O}.
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 The trajectory a(s) corresponds to a family {aB,(s)}, A > 0, -oo < s < oo,
 of homothetic curves, parametrized by arc length in the plane xy, which are
 solutions of (2.1). BY the behavior of the vector field (2.7) and by Lemma 2.8,
 we have that each curve ca, belonging to the family {aB,} does not intersect the
 boundary of ,t(R2m).

 Given a trajectory JJ of (2.7) we will denote by ,8X the trajectory of the
 vector field which is the translation of 11 by (ir, ir) .

 BY using (2.6), we obtain that the trajectories 1X and 1 in the plane aVIr
 correspond to the semi-axes Ox and Oy in the plane xy, respectively. In

 addition, y-(-oo) = (-ir, 0) implies x = 0, y > 0.
 On the other hand, the trajectories yX and yX are translations of the trajec-

 tories y- and y', respectively. Therefore, in order to describe the behavior of
 the solution curves of (2.1) with m = 2, 3, which either do not intersect the
 semi-axes Ox and Oy or intersect perpendicularly the positive semi-axis Ox,
 it suffices to describe the behavior of the curves aB and y respectively.

 We begin analyzing the behavior of the curve y, through the following
 lemma.

 (3.2) Lemma. The curve aA(s) hasbthe following properties:
 (i) y, is embedded;
 (ii) u intersects the diagonal x = y infinitely often and is asymptotic to this

 diagonal.

 Proof. (i) The curve y,a(s) = (x(s), y(s)) remains completely determined by

 the following initial conditions: x(-oo) = x0 $y 0, y(-oo) = 0, x'(-oo) = 0,
 y'(-oo) = 1 .

 Since, by Proposition 3 in [8], I(s) = (x(s))m-ly2 (s) is a monotonically
 increasing function of s, we have from (2.2) that (X(u))m ? (X(t))mol sin 0(s)
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 Similarly, we obtain x(s) > x(so) if s > so, x(so) = xo : 0, y(so) = yo,
 x'(so) = 0, and y'(so) = 1 .

 By again using Proposition 3 in [8] we now know that J(s) = (y(s))m-lxl(s)

 is a monotonically increasing function of s. Thus, if x(sl) = xi :$ 0, y(si) =
 Yi :$ 0, x'(sl) = 1, and y'(sl) = 0, we have, using (2.2), that (y(s))m-l >
 (y(s))m-l cosO(s) = J(s) > J(sl) = (y(s5))m-l with s > s, . So y(s) > y(si).

 We conclude that y, does not intersect itself, that is, y, is embedded. This
 proves (i).

 (ii) Since the line a = V/ intersects the trajectory y infinitely often (see
 Lemma 3.1) we obtain, using Lemma 2.8, that the line x = y intersects y,
 infinitely often. In addition, y(+oo) = (0, 0) implies (see Lemma 2.8) that
 x = y and x' = y' > 0, that is, y, is asymptotic to the diagonal x = y . z

 Before giving the characterization of the behavior of the curve aA, we need
 the following proposition.

 (3.3) Proposition. Let (0 be the angle in the plane xy of the position vector
 of the curve aA with the Ox-axis (see (2.3)). Then the local maximum and
 minimum values of (p are attained when a + VI = 2k7r or VI - a = (2j + 1)7r,
 where k, j E Z. Furthermore,

 (3.4) +

 when k = O.

 Proof. By (2.6) we obtain that

 (3.5) (0= 4 + 4
 Thus ' = 0 is equivalent to a' = VI' and from (2.7) we obtain that a' = VI'
 isequivalentto sina=sin(- V). So a+V/=2klr or V/-a=(2j+1)7r. Now
 (3.4) follows from (3.5) when k = 0. This proves the proposition. rJ

 We will now present some properties of the curve aA. As we saw before,
 such a curve does not intersect the boundary of the orbit space.

 (3.6) Lemma. The curve aA (s) has the following properties:
 (i) aA intersects the diagonal x = y infinitely often and is asymptotic to the

 diagonal when s tends to +oo and to -oo;

 (ii) aA intersects itself.

 Proof. (i) Since the trajectory a intersects the diagonal a = VI infinitely often
 we obtain, by Lemma 2.8, that aA intersects the diagonal x = y infinitely
 often. Thus, a(-oo) = (7r, 7r) implies, by Lemma 2.8, that x(s) = y(s) and
 x'(s) = y'(s) <0 when s tends to -oo. Similarly, a(+oo) = (0, 0) implies
 that x(s) = y(s) and x'(s) = y'(s) > 0 when s tends to +oo. This proves (i).

 (ii) Let {(a(sIm-i), VI(52m-_))}m>1 and {(a(s5m- ) VX(5sm_1))}m>1 be se-
 quences of points of the trajectory a (see Figure 3.3) such that:

 2r < VI(Sl ) < VI(S3 ) < ... < 7wr, a(&_2m1) + VI(s2-1= 27T,

 rep c > ti (S) > Ve(Sy) > ... > 7.r, (52m-1) + ve(sly27.,

 respectively.
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 Let {(U(s7-m) V/(s7m))}mI> and {(a(s5+m) V/(s+jm))}mI> be sequences of
 points of the trajectory a (see Figure 3.3) such that:

 2 < V'(52) < V/(S4 ) < ... < ?, C(S(2 + V/(52m ?)

 2 > '(2 ) '(4 ) 7(2m ) X(2m)=?X 7r +

 respectively.

 If we translate the points a(sImi-) and a(s5mi-), by (-7r, -7r), we obtain

 V M(Sl) - 7 < V(S2 ) < V/(S3) - 7 < .. < V(S2m-1) - 7 < VI(S2m)<*X

 /(S2 ) > V/(S+) )- 7 > V/(S4) > .. > V/(S2m) > V/(S2-1-7

 By using (3.5) we obtain that the value of (p is invariant if we translate a point
 (c, y,) by (7r, 7r). Thus, from (3.7), we obtain

 (3.8) 1(o(s) <(5(s) < <((2mi) <((2m) <
 (52s ) > (51 +) >... > (52m+) > (P(52m-1) > *

 It follows from Proposition 3.3 that s- and s+, m > 1, are points of local
 minima and local maxima of (p, respectively. Furthermore, by (3.8), sj and
 S5+ are points of global minima and global maxima of qp, respectively.

 Now we are going to show, by again using (3.8), that aA intersects itself. In
 fact, consider the curve segment aA that joins the points aA(sV) and aA(s+) .
 Then aA(st) either belongs to the cone determined by OaA(s2+), aA (sV )aA(s2+),
 and OaA(s-) or not. In the first case, since (p(sV) < (p(sIm- ((S2m1) <
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 p (s+), m > 2, and (i) holds, we obtain that aA intersects itself. In the second
 case, since (o(sj) < (p(s5-), m > 1, O(5p+m) < p(sj+), m > 2, and (i) holds,
 we obtain that aA also intersects itself. This proves our assertion and Lemma
 3.6. o

 Proof of Theorem 1.1. (a) Since M2m-l is of the topological type of a Rm x

 Sm-1 , we obtain that its generating curve belongs to the family {Iy} . Therefore,
 by Lemma 3.2, we know that its generating curve is embedded. It follows, by
 using Lemma 1.4 in [5], that M2m-l is embedded. This proves (a).

 (b) Since M2m-l is of the topological type of R x Sm-I x Sm-I, its gener-
 ating curve belongs to the family {I aA} . Thus, by Lemma 3.6, we know that
 its generating curve intersects itself. So, by using Lemma 1.4 in [5], M2m-
 intersects itself. This proves (b).

 The fact that M2m-l intersects the minimal quadratic cone outside of any
 compact, and it is arbitrarily close to this cone follows by Lemma 3.2(ii) and
 Lemma 3.6(i). This concludes the proof of Theorem 1.1 I

 4. THE MINIMAL QUADRATIC CONE

 In this section we prove the following theorem.

 (4.1) Theorem. Let M2m-l, m > 2, be a minimal hypersurface of R2m such
 that it is invariant under G and passes through the origin of R2m . Then M2m-l
 is the minimal quadratic cone.

 In order to prove the above theorem, we need the following result.

 (4.2) Lemma. If x(s) and y(s) are real analytic functions satisfying (2.1) with

 x(O) = y(O) = O, then x(s) = y(s) = 2'X5s

 Proof. We can write x(s) = Zn-1 a,sn and y(s) = sn . Therefore,
 oon=1 n=\
 00 /n-I

 x(s)x (s) = (Zk + I)ak+lan-k 5
 n=1 k=O

 0o0 n-1

 y(s)y'(s) = Z (Z(k + I)bk+lbn-k s
 n=1 k=O

 Thus,

 00

 (4.3) x(s)x'(s) - y(s)y'(s) = (a2 - b2)s + n
 n=2

 where

 n-I

 (4.4) cn = Z(k + l)(ak+lan-k -bk+lbn-k), n > 2.
 k=O

 Similarly,

 (( n-2 s

 (4. 5) x Wsy (s) (x" (s)y' (s) -x' (s)y" (s) ) =E E: dien -i-2 |sn,
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 where

 di = Z(k + 2)(k + 1)(i-k + l)(ak+2bik+l -ai k+1bk+2) i> 0,
 (4.6) k=O

 n

 en = Z anj+lbj+l, n > 0.
 j=o

 Since x and y satisfy (2.1), we obtain from (4.3) and (4.5) that

 oo/n-2

 (4.7) (m - 1)(al - b2)s + Z (m - )cn + E dieni2 =0
 n=2 i=O

 Now, we use the induction method on the coefficients in order to complete

 the proof. It is clear from (4.7) that a, = b1 . Suppose that

 (4.8) a = bl1, l=1 2,.n - 1.
 Therefore,

 (4.9) ak+2bi-k+l - ai-k+lbk+2 = , i-=0, 1, ... , n-2,
 k = 0, 1...,n-3.

 Since, by using (4.6),

 n-2

 E dien-i-2
 i=O

 =E [E("(k + 2)(k + 1)(i - k + l)(ak+2bi-k+l - ai-k+lbk+2))
 i=0 k=0

 *(Ean-i-j-l1bj+l)|

 we obtain, from (4.9) and (4.8),

 n-2

 (4.10) Zdien-2 = n(n - 1)a3(an - bn).
 i=O

 Also from (4.4) and (4.8),

 (4.11) Cn = (n + l)a1 (an -bn)a
 Thus, by using (4.1 1), (4.10), and (4.7), we obtain

 a,[(m - 1)(n + 1) + n(n - 1)aj](an - bn) = 0.
 This proves that x(s) = y(s). Since (X'(S))2 + (y'(S))2 = 1, we conclude the
 proof of the lemma. 0

 Proof of Theorem 4.1. Since a minimal hypersurface in R22m is analytic, we
 obtain that its generating curve is analytic. Therefore, since the hypersurface
 M 2m- I passes through the origin of R2m, we have that the coordinate functions
 of its generating curve satisfy the hypothesis of Lemma 4.2. So, the generating
 curve is given by (v/ls/2, V2s/2) which corresponds to the minimal quadratic
 cone. This proves the theorem. 0
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