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Abstract. In this work, we present several rigidity results for compact free boundary
hypersurfaces in initial data sets with boundary. Specifically, in the first part of the paper,
we extend the local splitting theorems from [G. J. Galloway and H. C. Jang, Some scalar
curvature warped product splitting theorems, Proc. Am. Math. Soc. 148 (2020), no. 6,
2617–2629] to the setting of manifolds with boundary. To achieve this, we build on the
approach of the original paper, utilizing results on free boundary marginally outer trapped
surfaces (MOTS) applied to specific initial data sets. In the second part, we extend the main
results from [A. Barros and C. Cruz, Free boundary hypersurfaces with non-positive Yamabe
invariant in mean convex manifolds, J. Geom. Anal. 30 (2020), no. 4, 3542–3562] to the
context of free boundary MOTS in initial data sets with boundary.

1. Introduction

In differential geometry, there are several results aimed at understanding the geometry and
topology of Riemannian manifolds that have a lower bound on their scalar curvature. In the
case of dimension n = 2, a classical result by R. Schoen and S.-T. Yau [38] shows that any
closed surface that minimizes area in a three-dimensional Riemannian manifold with positive
scalar curvature is homeomorphic to either S2 or RP2.

In this context, another result due to Schoen and Yau [39] is the following:

Theorem 1 (Schoen-Yau, 1987). Let (Mn+1, g), with n ≥ 2, be a Riemannian manifold with
positive scalar curvature, RM > 0. If Σ is a closed, two-sided, stable minimal hypersurface
in M , then Σ admits a metric of positive scalar curvature.

In [12], M. Cai proved the following splitting theorem, assuming that Σ minimizes volume
rather than merely being stable (see [24] for a simplified proof).

Theorem 2 (Cai, 2002). Let (Mn+1, g), with n ≥ 2, be a Riemannian manifold with
non-negative scalar curvature, RM ≥ 0. Suppose Σ is a closed, two-sided minimal
hypersurface that minimizes volume in M . If Σ does not admit a metric of positive scalar
curvature, then there exists a neighborhood V of Σ in M such that (V, g|V ) is isometric to
(−δ, δ) × Σ with the product metric dt2 + h, where h = g|Σ and (Σ, h) is Ricci-flat.

The case of the theorem above for n = 2 was proved by M. Cai and G. J. Galloway [13]
(see the comment following Theorem 5 below).
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More recently, G. J. Galloway and H. C. Jang [25] obtained a splitting theorem for a
neighborhood of the boundary Σ of a Riemannian manifold (M, g), assuming a lower bound
on the scalar curvature of M and an upper bound on the mean curvature of Σ, while also
assuming that Σ does not admit a metric of positive scalar curvature. To prove this theorem,
they used several results from the theory of marginally outer trapped surfaces (MOTS),
considering the special initial data set (M, g,K = −ϵg), where ϵ = 0 or 1. More precisely,
they proved the following result:

Theorem 3 (Galloway-Jang, 2020). Let (Mn+1, g), with n ≥ 2, be a Riemannian manifold
with compact boundary Σ. Fix ϵ = 0 or 1, and assume the following conditions:

(1) The scalar curvature of M satisfies RM ≥ −(n+ 1)nϵ;
(2) The mean curvature of Σ satisfies HΣ ≤ nϵ;
(3) Σ does not admit a metric of positive scalar curvature;
(4) Σ is locally weakly outermost.1

Under these assumptions, there exists a neighborhood V of Σ in M such that (V, g|V ) is
isometric to [0, δ) × Σ with the warped product metric dt2 + e2ϵth, where h = g|Σ and (Σ, h)
is Ricci-flat.

They also observed that an analogous result holds if the condition on the mean curvature of
Σ is replaced by HΣ ≤ −nϵ. In this case, (V, g|V ) will be isometric to ([0, δ)×Σ, dt2 +e−2ϵth).

Below, we present the first result of this work, inspired by Theorem 3, the proof of which
will be provided in Section 3.

Theorem A. Let (Mn+1, g), with n ≥ 2, be a Riemannian manifold with boundary, and let
Σ be a compact, free boundary hypersurface in M . Fix ϵ = 0 or 1, and assume the following
conditions:

(1) The manifold M has scalar curvature RM ≥ −(n+ 1)nϵ, and its boundary has mean
curvature H∂M ≥ 0;

(2) The hypersurface Σ has mean curvature HΣ ≤ nϵ;
(3) Σ does not admit a metric with positive scalar curvature and minimal boundary;
(4) Σ is locally weakly outermost with respect to H0 = nϵ.

Then, there exists an outer neighborhood V of Σ in M such that (V, g|V ) is isometric to
[0, δ) × Σ with the warped product metric dt2 + e2ϵth, where h = g|Σ and (Σ, h) is Ricci-flat
with a totally geodesic boundary.

As in the closed case, an analogous result holds if we replace HΣ ≤ nϵ and dt2 +e2ϵth above
by HΣ ≤ −nϵ and dt2 + e−2ϵth, respectively, assuming that Σ is locally weakly outermost
with respect to H0 = −nϵ.
1In Theorem 3, the term “locally weakly outermost” corresponds to being “locally weakly outermost with
respect to H0 = nϵ” in our terminology (see [25, p. 2]).
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At the end of Section 3, we present examples that illustrate the necessity of condition (3)
(for ϵ = 0 or 1) and condition (4) (for ϵ = 1) in Theorem A. These examples are inspired by
those of Galloway and Jang (see [25, Remark 1]) in the closed case.

As noted, rigidity results involving scalar curvature have garnered significant attention
from geometers over the years. The following theorem, due to H. Bray, S. Brendle, and
A. Neves [10], concerns surfaces and assumes the existence of an embedded sphere that
locally minimizes area in a Riemannian manifold with scalar curvature bounded below by a
positive constant. We restate it as follows:

Theorem 4 (Bray-Brendle-Neves, 2010). Let (M3, g) be a Riemannian manifold with scalar
curvature RM ≥ 2c, for some constant c > 0. If Σ2 ⊂ M3 is an embedded sphere that locally
minimizes area, then the area of Σ satisfies

A(Σ) ≤ 4π
c
.

Moreover, if equality holds, then there exists a neighborhood V of Σ in M such that (V, g|V )
is isometric to (−δ, δ) × Σ with the product metric dt2 + h, where h = g|Σ and (Σ, h) is the
round sphere of radius 1/

√
c. In particular, if M is complete and Σ minimizes area in its

isotopy class, then the universal cover of M is isometric to the product (R × Σ, dt2 + h),
assuming equality holds.

The next theorem, due to I. Nunes [35], extends the result of Bray, Brendle, and Neves to
the context of closed surfaces Σ, with genus g(Σ) ≥ 2, embedded in a Riemannian manifold
with scalar curvature bounded below by a negative constant.

Theorem 5 (Nunes, 2013). Let (M3, g) be a Riemannian manifold with scalar curvature
RM ≥ −2c, for some constant c > 0. If Σ2 ⊂ M3 is a two-sided, embedded, closed Riemann
surface with genus g(Σ) ≥ 2 that locally minimizes area, then the area of Σ satisfies

A(Σ) ≥ 4π(g(Σ) − 1)
c

.

Moreover, if equality holds, then there exists a neighborhood V of Σ in M such that (V, g|V ) is
isometric to (−δ, δ)×Σ with the product metric dt2+h, where h = g|Σ and (Σ, h) has constant
Gaussian curvature equal to −c. In particular, if M is complete and Σ minimizes area in
its isotopy class, then the universal cover of M is isometric to the product (R × Σ, dt2 + h),
assuming equality holds.

It is worth noting that the works of Cai [12], Bray-Brendle-Neves [10], and Nunes [35] were,
in part, inspired by the pioneering work of Cai and Galloway [13], in which, motivated by
questions related to the topology of black holes, they solved a problem posed by
D. Fischer-Colbrie and R. Schoen [23]. Among other things, they proved the rigidity result
that we paraphrase as follows: if (M3, g) is a Riemannian manifold with non-negative scalar
curvature and Σ2 ⊂ M3 is a two-sided embedded torus that locally minimizes area, then
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(M, g) is isometric to (−δ, δ) × Σ with the product metric dt2 + h in a neighborhood of Σ,
where h = g|Σ and (Σ, h) is a flat torus (i.e. M is flat in a neighborhood of Σ). Moreover,
if M is complete and Σ minimizes area in its isotopy class, then the universal cover of M is
isometric to (R × Σ, dt2 + h) (i.e. M is globally flat).

Despite the similarities between the results due to Bray-Brendle-Neves, Nunes, and
Cai-Galloway, their proofs are quite different. However, in 2015, M. Micallef and V. Moraru,
in [33], presented a unified proof for these important results. This allowed, one year later,
V. Moraru [34] to extend Nunes’ theorem to the case of closed hypersurfaces Σ of dimension
n ≥ 3.

Theorem 6 (Moraru, 2016). Let (Mn+1, g), with n ≥ 3, be a Riemannian manifold with
scalar curvature RM ≥ −2c, for some constant c > 0. Let Σn ⊂ Mn+1 be a two-sided, closed
embedded hypersurface with σ(Σ) < 0 that locally minimizes volume. Then the volume of Σ
satisfies

vol(Σ) ≥
(

|σ(Σ)|
2c

)n
2

.

Moreover, if equality holds, then there exists a neighborhood V of Σ in M such that (V, g|V ) is
isometric to (−δ, δ)×Σ with the product metric dt2 +h, where h = g|Σ and (Σ, h) is Einstein
with scalar curvature RΣ = −2c.

Above, σ(Σ) represents the Yamabe invariant of Σ (see Subsection 2.2).
The case of closed hypersurfaces Σ of dimension n ≥ 2 with σ(Σ) ≤ 0 (i.e. those that do

not admit a metric of positive scalar curvature), in Riemannian manifolds with non-negative
scalar curvature, corresponds to Theorem 2. For hypersurfaces of dimension n ≥ 3 with
σ(Σ) > 0 in Riemannian manifolds with positive scalar curvature, only a few special cases
have been addressed so far: A. Barros et al. [9] studied the case of hypersurfaces Σ of
dimension n = 4, assuming that (Σ, h) is Einstein; the second-named author [31] extended
the work of A. Barros et al. to more general (not necessarily Einstein) hypersurfaces of
dimension n = 4; and H. Deng [18] studied the case when n > 4 and (Σ, h) is Einstein.

In 2020, A. Barros and C. Cruz [8] extended Theorem 6 to the setting of compact free
boundary hypersurfaces in Riemannian manifolds with boundary. The result is as follows:

Theorem 7 (Barros-Cruz, 2020). Let (Mn+1, g), with n ≥ 3, be a Riemannian manifold with
scalar curvature RM bounded below and mean convex boundary ∂M , i.e. H∂M ≥ 0. Consider
a compact, two-sided, properly embedded hypersurface Σn ⊂ Mn+1 that is free boundary and
locally minimizes volume.

I) If inf RM < 0 and σ1,0(Σ, ∂Σ) < 0, then

vol(Σ) ≥
(
σ1,0(Σ, ∂Σ)

inf RM

)n
2

.
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Furthermore, if equality holds, then there exists a neighborhood V of Σ in M such that
(V, g|V ) is isometric to (−δ, δ)×Σ with the product metric dt2 +h, where h = g|Σ and
(Σ, h) is Einstein with scalar curvature RΣ = inf RM and a totally geodesic boundary.

II) If RM ≥ 0 and σ1,0(Σ, ∂Σ) ≤ 0, then there exists a neighborhood V of Σ in M such
that (V, g|V ) is isometric to (−δ, δ)×Σ with the product metric dt2 +h, where h = g|Σ
and (Σ, h) is Ricci-flat with a totally geodesic boundary.

Above, σ1,0(Σ, ∂Σ) denotes the Yamabe invariant of the compact manifold Σ with boundary
(see Subsection 2.2).

Recently, L. F. Pessoa, E. Véras, and B. Vieira [36] extended the results of [8] to the setting
of capillary constant mean curvature hypersurfaces.

In the second part of this work, we extend Theorem 7, item I), to the context of free
boundary marginally outer trapped surfaces (MOTS).

Over the years, the study of MOTS, motivated by the theory of relativity, has garnered
significant attention from the mathematical academic community, particularly in the field
of differential geometry. Within this context, and concerning rigidity results, we present
the following theorem due to the second-named author [30] (definitions will be provided in
Subsection 2.1):

Theorem 8 (Mendes, 2019). Let (M3, g,K) be an initial data set, and let Σ2 be a closed,
weakly outermost MOTS in (M3, g,K) with genus g(Σ) ≥ 2. If µ − |J | ≥ −c for some
constant c > 0 and K is 2-convex on M+, then the area of Σ satisfies

A(Σ) ≥ 4π(g(Σ) − 1)
c

.

Moreover, if equality holds, then:
(1) There exists an outer neighborhood V of Σ in M such that (V, g|V ) is isometric to

[0, δ) × Σ with the product metric dt2 + h, where h = g|Σ and (Σ, h) has constant
Gaussian curvature equal to −c;

(2) K = a dt2 on V , where a ∈ C∞(V ) depends only on t ∈ [0, δ);
(3) µ = −c and J = 0 on V .

For hypersurfaces of dimension n ≥ 3, he established the following result:

Theorem 9 (Mendes, 2019). Let (Mn+1, g,K), with n ≥ 3, be an initial data set, and let
Σn be a closed, weakly outermost MOTS in (Mn+1, g,K) with Yamabe invariant σ(Σ) < 0.
If µ − |J | ≥ −c for some constant c > 0 and K is n-convex on M+, then the volume of Σ
satisfies

vol(Σ) ≥
(

|σ(Σ)|
2c

)n
2

.

Moreover, if equality holds, then:



RIGIDITY RESULTS FOR FREE BOUNDARY HYPERSURFACES 6

(1) There exists an outer neighborhood V of Σ in M such that (V, g|V ) is isometric to
[0, δ) × Σ with the product metric dt2 + h, where h = g|Σ and (Σ, h) is Einstein with
scalar curvature RΣ = −2c;

(2) K = a dt2 on V , where a ∈ C∞(V ) depends only on t ∈ [0, δ);
(3) µ = −c and J = 0 on V .

Recently, A. Alaee, M. Lesourd, and S.-T. Yau [1] extended the concept of free boundary
minimal surfaces to marginally outer trapped surfaces (MOTS). Among other results, they
proved an analog of Theorem 8 for compact free boundary MOTS.

The second result in this work was inspired by the aforementioned results, extending part
of the work of Alaee, Lesourd, and Yau to compact free boundary MOTS Σn, with n ≥ 3,
and Yamabe invariant σ1,0(Σ, ∂Σ) < 0. The case of compact free boundary MOTS with
Yamabe invariant σ1,0(Σ, ∂Σ) ≤ 0 (i.e. those that do not admit a positive scalar curvature
metric with minimal boundary) was recently addressed by the second-named author [32],
which corresponds to the analog of Theorem 7, item II), for compact free boundary MOTS.

We now state our second result (definitions will be provided in Section 2):

Theorem B. Let (Mn+1, g,K), with n ≥ 3, be an initial data set with boundary, and let
Σn be a compact, free boundary stable MOTS in (Mn+1, g,K) that is weakly outermost and
whose Yamabe invariant σ1,0(Σ, ∂Σ) is negative.

If µ− |J | ≥ −c for some constant c > 0, (M, g,K) satisfies the boundary dominant energy
condition, and K is n-convex, all of which hold on M+, then the volume of Σ satisfies

vol(Σ) ≥
(

|σ1,0(Σ, ∂Σ)|
2c

)n
2

.

Moreover, if equality holds, then:
(1) There exists an outer neighborhood V of Σ in M such that (V, g|V ) is isometric to

[0, δ) × Σ with the product metric dt2 + h, where h = g|Σ and (Σ, h) is Einstein with
scalar curvature RΣ = −2c and a totally geodesic boundary;

(2) K = a dt2 on V , where a ∈ C∞(V ) depends only on t ∈ [0, δ);
(3) µ = −c and J = 0 on V ;
(4) The boundary dominant energy condition is saturated along V ∩ ∂M .

At the end of Section 4, we present an initial data set model in support of Theorem B.
The paper is organized as follows: In Subsection 2.1, we present some preliminaries for

Theorem A and, in Subsection 2.2, for Theorem B. In Section 3, we present the proof of
Theorem A and a corollary of it. Finally, in Section 4, we present the proof of Theorem B.
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2. Preliminaries

2.1. Free boundary MOTS. An initial data set (M, g,K) consists of a Riemannian
manifold (M, g) and a symmetric (0, 2)-tensor K defined on M . For (M, g,K), the local
energy density and the local current density are defined as

µ = 1
2(RM − |K|2 + (trK)2) and J = div(K − (trK)g),

respectively, where RM is the scalar curvature of (M, g). The initial data set (M, g,K) is
said to satisfy the dominant energy condition (DEC) if

µ− |J | ≥ 0 on M.

In this work, we assume that M is a differentiable manifold with boundary. The second
fundamental form of ∂M in (M, g), denoted by II∂M , is defined as

II∂M(Y, Z) = ⟨∇Y ϱ, Z⟩, Y, Z ∈ X(∂M),

where ϱ is the outward unit normal vector of ∂M in (M, g).
The momentum tensor π of (M, g,K) is given by

π = K − (trK)g.

We define (ιϱπ)⊤ as the restriction of ιϱπ = π(ϱ, ·) to the tangent vector fields on ∂M . The
initial data set (M, g,K) is said to satisfy the boundary dominant energy condition (BDEC)
if

H∂M ≥ |(ιϱπ)⊤| on ∂M.

The BDEC was introduced by S. Almaraz, L. L. de Lima, and L. Mari [2] in the context of
proving positive mass theorems for asymptotically flat and asymptotically hyperbolic initial
data sets with non-compact boundaries (see [2, Remark 2.7] for the motivation behind this
definition).

Let Σ be a two-sided hypersurface in (M, g). Fix a field N of unit normal vectors to Σ in
(M, g). The null mean curvatures θ+ and θ− of Σ in (M, g,K) are defined as

θ+ = trΣ K +HΣ and θ− = trΣ K −HΣ,

where HΣ = divΣ N is the mean curvature of Σ in (M, g).
Following R. Penrose, we say that the hypersurface Σ is outer trapped if θ+ < 0, weakly

outer trapped if θ+ ≤ 0, and marginally outer trapped if θ+ = 0. In the latter case, Σ is
referred to as a MOTS (an abbreviation for marginally outer trapped surface).



RIGIDITY RESULTS FOR FREE BOUNDARY HYPERSURFACES 8

The null second fundamental forms χ+ and χ− of Σ in (M, g,K) are defined as

χ+ = K|Σ + A and χ− = K|Σ − A,

where A is the second fundamental form of Σ in (M, g), given by

A(Y, Z) = ⟨∇YN,Z⟩, Y, Z ∈ X(Σ).

Note that θ± = trχ±.
Let (Σt)|t|<ε be a variation of Σ in M , with Σ = Σ0 and variational vector field

V = ∂

∂t

∣∣∣∣
t=0

= ϕN for some ϕ ∈ C∞(Σ).

We can view the null mean curvature θ+ = θ+(t) of Σt in (M, g,K) as a one-parameter
family of functions defined on Σ. It is known (see [5]) that

(2.1) ∂θ+

∂t

∣∣∣∣
t=0

= Lϕ+
(

− 1
2(θ+)2 + θ+τ

)
ϕ,

where
Lϕ = −∆ϕ+ 2⟨X,∇ϕ⟩ + (Q− |X|2 + divX)ϕ

and
Q = 1

2R
Σ − (µ+ J(N)) − 1

2 |χ+|2.

Here, RΣ is the scalar curvature of Σ with respect to the induced metric. Additionally, X
is the vector field tangent to Σ that is dual to the 1-form K(N, ·)|Σ, and τ = trK.

The above operator L is referred to as the stability operator for MOTS. This terminology
arises because, in the Riemannian case (i.e. when K ≡ 0), a MOTS corresponds to a minimal
hypersurface, and the operator L reduces to the classical stability operator (or the Jacobi
operator) in the theory of minimal surfaces.

It is worth noting that the notion of stability for closed MOTS was introduced by
L. Andersson, M. Mars, and W. Simon [5]. In the case of capillary MOTS in initial data
sets with boundary, the notion of stability was introduced by A. Alaee, M. Lesourd, and
S.-T. Yau [1]. In this work, we will only consider the case of compact free boundary MOTS
in initial data sets (M, g,K) with boundary.

From now on, we assume that M is a differentiable manifold with boundary and that Σ is
a properly embedded, compact hypersurface with boundary in M . That is, Σ is embedded
in M and satisfies ∂Σ = Σ ∩ ∂M .

We say that Σ is free boundary in (M, g) if Σ intersects ∂M orthogonally, i.e. ϱ = ν along
∂Σ, where ν is the outward unit normal vector of ∂Σ in Σ with respect to the induced metric.
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A compact free boundary MOTS Σ in (M, g,K) is said to be stable (see Definition 5.1
in [1]) if there exists a non-negative function ϕ ∈ C∞(Σ) \ {0} satisfying

Lϕ = −∆ϕ+ 2⟨X,∇ϕ⟩ + (Q− |X|2 + divX)ϕ ≥ 0 on Σ,

Bϕ = ∂ϕ

∂ν
− II∂M(N,N)ϕ = 0 on ∂Σ.

Without loss of generality, by the maximum principle for non-negative functions, we can
assume that ϕ > 0.

Suppose Σ is a MOTS that separates (M, g,K), that is, M \Σ is disconnected. The exterior
of Σ, denoted by M+, is the region consisting of Σ and the portion of M \ Σ toward which
the unit normal vector N points.

We say that Σ is outermost if no hypersurface homologous to Σ, contained in M+, except Σ,
has null mean curvature θ+ ≤ 0. Equivalently, Σ is outermost if, for any hypersurface Σ′ ̸= Σ
homologous to Σ and contained in M+, there exists a point p ∈ Σ′ such that θ+(p) > 0.
Similarly, we say that Σ is weakly outermost if no hypersurface homologous to Σ, contained
in M+, has null mean curvature θ+ < 0.

We say that K is n-convex on M+ if trπ K ≥ 0 for any p ∈ M+ and any n-dimensional
linear subspace π ⊂ TpM . Equivalently, K is n-convex if the sum of the n smallest eigenvalues
of K is always non-negative.

The next three results are due to the second-named author [32], who generalized results
by G. J. Galloway and R. Schoen [27] to the context of compact free boundary MOTS in
initial data sets with boundary.

Lemma 2.1 (Mendes, 2022). Let (Σn, h), with n ≥ 2, be an orientable, connected, compact
Riemannian manifold with boundary. Suppose there exists a function u ∈ C∞(Σ), u > 0,
such that 

Lu = −∆u+ (1
2R

Σ − P )u ≥ 0 on Σ,
∂u

∂ν
+H∂Σu ≥ 0 on ∂Σ,

where RΣ is the scalar curvature of (Σ, h), H∂Σ is the mean curvature of ∂Σ in (Σ, h), and
P is a non-negative function on Σ. Then one of the following conditions holds:

(1) Σ admits a metric with positive scalar curvature and minimal boundary;
(2) (Σ, h) is Ricci-flat with a totally geodesic boundary, P ≡ 0, and u is constant.

Conclusion (2) of Lemma 2.1 will be important for our purposes. In fact, one of the
hypotheses of Theorem A states that Σ does not satisfy condition (1). Thus, by verifying
that the assumptions of Lemma 2.1 are met, we ensure the validity of condition (2).

Lemma 2.2 (Mendes, 2022). Let (Mn+1, g,K), with n ≥ 2, be an initial data set with
boundary, and let Σ be a compact free boundary MOTS in (M, g,K). If Σ is stable, then the
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first eigenvalue λ1(L0) of the operator L0 = −∆ +Q on Σ with Robin boundary condition

B0u = Bu+ ⟨X, ν⟩u = 0 on ∂Σ

is non-negative.

It is well known that the first eigenvalue λ1(L0) of the operator L0 defined in the previous
lemma can be characterized as follows:

λ1(L0) = inf
u∈C∞(Σ)\{0}

∫
Σ
(|∇u|2 +Qu2)dv −

∫
∂Σ

(II∂M(N,N) − ⟨X, ν⟩)u2ds∫
Σ
u2dv

.

Theorem 2.3 (Mendes, 2022). Let (Mn+1, g,K), with n ≥ 2, be an initial data set with
boundary, and let Σ be a compact, free boundary stable MOTS in (M, g,K). Assume that
(M, g,K) satisfies both the DEC and the BDEC, i.e. µ ≥ |J | on M and H∂M ≥ |(ιϱπ)⊤|
on ∂M . If Σ is weakly outermost in (M, g,K) and does not admit a metric with positive
scalar curvature and minimal boundary, then there exists an outer neighborhood V ∼= [0, δ)×Σ
of Σ in M such that

g|V = φ2dt2 + ht,

where φ : V → R is a positive function and ht is the induced metric on Σt
∼= {t} × Σ.

Moreover, the following conditions hold:
(1) Σt

∼= {t} × Σ is a free boundary MOTS, and it has vanishing outward null second
fundamental form;

(2) Σt is Ricci-flat and has a totally geodesic boundary with respect to the induced metric;
(3) The DEC is saturated on V , and J |Σt = 0;
(4) The BDEC is saturated on ∂Σt, and (ιϱπ)⊤|∂Σt = 0.

A crucial step for Galloway and Jang in proving Theorem 3 was demonstrating that Σ is
a MOTS in the special initial data set (M, g,K = −ϵg). To achieve this, they relied on a
well-known result by L. Andersson and J. Metzger (see [6, Lemma 5.2]).

In our context, a similar result is required for compact free boundary hypersurfaces. This
will be established in Lemma 3.1 later. However, before proceeding, we will state a maximum
principle for parabolic equations, which plays a key role in the proof of the lemma.

Let u : Σ × [0, T ] → R, with T > 0, be a function, and let Lu = ∂u
∂t

+ Pu be a parabolic
operator, with P defined as

Pu = −aij(x, t)∇i∇ju− bi(x, t)∇iu− c(x, t)u,

where aij, bi, c ∈ L∞(Σ × [0, T ]).
Additionally, let f : R × Σ × [0, T ] → R be a function satisfying the following conditions:

f(0, x, t) ≥ 0,

|f(s, x, t) − f(0, x, t)| ≤ κ(x, t) · |s| for |s| ≤ ρ,
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where κ ∈ L∞(Σ × [0, T ]) and ρ > 0 is a constant.
Now, consider a vector field v defined on ∂Σ × [0, T ], where v is tangent to Σ at each point

and satisfies g(v, ν) > 0, with ν denoting the outward unit normal field of ∂Σ in Σ.
We are now ready to state the maximum principle:

Theorem 2.4 (Maximum principle for parabolic equations). Let L, f , and v be as defined
above, and let u : Σ × [0, T ] → R be a continuous function such that u is of class C2,1 in a
neighborhood of each point (x, t) ∈ Σ × [0, T ] where |u(x, t)| < ε, with ε > 0 being a small
constant. Suppose that u satisfies the following conditions:

(i) u(·, 0) ≥ 0;
(ii) Lu(x, t) ≥ 0 for every (x, t) ∈ Σ × (0, T ] with |u(x, t)| < ρ;

(iii) ∂u
∂v

(x, t) = f(u(x, t), x, t) for each (x, t) ∈ ∂Σ × (0, T ] with |u(x, t)| < ρ.
Then, u ≥ 0. Furthermore, if u(·, 0) is not identically zero, then u(x, t) > 0 for every
(x, t) ∈ Σ × (0, T ) ∪ int(Σ) × {T}.

This result is discussed in detail in [40].

Remark 2.5. It is important to mention that the maximum principle stated above will be
applied in a very specific setting. In this case:

• u will be of class C∞ on Σ × [0, T ],
• Lu = 0 on Σ × [0, T ],
• ∂u

∂v
(x, t) = f(u(x, t), x, t) for every (x, t) ∈ ∂Σ × [0, T ], and

• the function f will satisfy

|f(s, x, t) − f(0, x, t)| = κ(x, t) · |s|, ∀(s, x, t) ∈ R × Σ × [0, T ].

In this special case, the constants ρ > 0 and ε > 0 are unnecessary.

Next, we present the definition of the mean curvature flow with Neumann boundary
(or free boundary) condition.

Consider a hypersurface S in Rn+1 and an orientable compact manifold Σn with boundary.
Let F0 : Σ → Rn+1 be an immersion such that Σ0 := F0(Σ) satisfies the following conditions:∂Σ0 = F0(∂Σ) = Σ0 ∩ S,

⟨N0, ϱ ◦ F0⟩(x) = 0, ∀x ∈ ∂Σ,

where N0 and ϱ are unit normal fields to Σ0 and S, respectively.
Let F : Σn × [0, T ) → Rn+1 be a family of immersions with F (·, 0) = F0. We say that F

evolves by the free boundary mean curvature flow if it satisfies the following conditions:

(2.2)



d

dt
F (x, t) = H⃗(x, t), ∀(x, t) ∈ Σ × [0, T ),

F (∂Σ, t) ⊂ S, ∀t ∈ [0, T ),

⟨N, ϱ ◦ F ⟩(x, t) = 0, ∀(x, t) ∈ ∂Σ × [0, T ),
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where H⃗ denotes the mean curvature vector of the immersion.
The short-time existence of the free boundary mean curvature flow was established by

A. Stahl [40], inspired by the work of K. Ecker and G. Huisken [19], who proved the short-time
existence of the mean curvature flow in the case where Σ0 is closed. Similarly, it can be shown
that the free boundary mean curvature flow exists for a small time T > 0 in Riemannian
manifolds (Mn+1, g) with boundary ∂M . In this general setting, S = ∂M and Σ0 is a compact
free boundary hypersurface in M .

To apply the maximum principle for parabolic equations (Theorem 2.4) to a function u, it
is necessary to verify that u satisfies conditions (i), (ii), and (iii). The following result will
assist in establishing condition (iii).

Consider a variation f : Σ × (−δ, δ) → M of Σ such that, for each t ∈ (−δ, δ), the map
ft : Σ ∋ x 7→ f(x, t) ∈ M is an immersion satisfying ft(∂Σ) ⊂ ∂M . We denote by Σt, Nt,
and HΣt the image ft(Σ), a unit normal vector field to Σt, and the mean curvature of Σt

(i.e. HΣt = divΣt Nt), respectively.
The variational vector field of f is expressed as

∂t = ∂f

∂t
.

Decomposing ∂t into its tangential and normal components yields:

∂t = ∂T
t + ϕtNt,

where ϕt is a function on Σt defined by ϕt = g(∂t, Nt), with g representing the Riemannian
metric on M .

In the special case where the variational vector field has only a normal component, i.e.
∂T

t = 0, the result below describes how to compute the derivative of ϕt in the direction of νt

(see [3, Proposition 17]).

Proposition 2.6 (Ambrozio, 2015). If Σ0 is free boundary and ∂T
t = 0 at t = 0, then

∂tg(Nt, ϱ)
∣∣∣
t=0

= −∂ϕ0

∂ν0
+ g(N0,∇N0ϱ)ϕ0,

where ν0 is the outward unit normal of ∂Σ0 in Σ0.

2.2. The Yamabe invariant. In this subsection, we present some preliminaries for
Theorem B.

The classical Yamabe problem, initially studied by H. Yamabe [42] and later resolved
through the contributions of N. S. Trudinger [41], T. Aubin [7], and R. Schoen [37], asserts
that for any Riemannian metric g on a closed manifold Σn, with n ≥ 3, there exists a metric
ḡ in the conformal class of g with constant scalar curvature.

For compact manifolds Σn with boundary, two natural extensions of the Yamabe problem
are as follows:
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(a) Given a Riemannian metric g on Σ, does there exist a metric ḡ in the conformal class
of g with constant scalar curvature and minimal boundary?

(b) Given a Riemannian metric g on Σ, does there exist a metric ḡ in the conformal class
of g with zero scalar curvature and constant mean curvature on the boundary?

These problems were introduced and first studied by J. F. Escobar [20, 21]. Significant
progress was later made by various authors, culminating in their complete resolution
(see [11, 15, 17, 28, 29]).

It can be shown that ḡ = φ
4

n−2 g, where φ ∈ C∞(Σ) and φ > 0, solves the Yamabe problem
with boundary (a) (resp. (b)) if and only if φ is a critical point of the functional

Qa,b
g (φ) =

∫
Σ

(4(n− 1)
n− 2 |∇φ|2 +RΣ

g φ
2
)
dv + 2

∫
∂Σ
H∂Σ

g φ2ds(
a
∫

Σ
φ

2n
n−2dv + b

( ∫
∂Σ
φ

2(n−1)
n−2 ds

) n
n−1
)n−2

n

with (a, b) = (1, 0) (resp. (a, b) = (0, 1)). Here, RΣ
g is the scalar curvature of (Σ, g), H∂Σ

g is
the mean curvature of ∂Σ, and dv, ds denote the volume elements of Σ and ∂Σ, respectively.

The Yamabe constant Qa,b
g (Σ, ∂Σ) of (Σ, g) is defined as

Qa,b
g (Σ, ∂Σ) = inf

φ∈C∞(Σ), φ>0
Qa,b

g (φ).

We say that ḡ = φ
4

n−2 g is a Yamabe metric if φ attains the Yamabe constant, that is,

Qa,b
g (φ) = Qa,b

g (Σ, ∂Σ).

The conformal class of g is denoted by

[g] = {φ
4

n−2 g | φ ∈ C∞(Σ), φ > 0},

and the set of all conformal classes of metrics on Σ is written as C(Σ). It is straightforward
to verify that Qa,b

g (Σ, ∂Σ) is a conformal invariant, meaning that if ḡ ∈ [g], then

Qa,b
ḡ (Σ, ∂Σ) = Qa,b

g (Σ, ∂Σ).

Thus, Qa,b
g (Σ, ∂Σ) is often denoted by Qa,b

[g] (Σ, ∂Σ).
The Yamabe invariant σa,b(Σ, ∂Σ) of Σ is defined as the supremum of the Yamabe constants

over all conformal classes:

σa,b(Σ, ∂Σ) := sup
[g]∈C(Σ)

Qa,b
[g] (Σ, ∂Σ).

Two important results are now presented for use in the proof of Theorem B. The first is a
uniqueness result due to Escobar [22]:

Theorem 2.7 (Escobar, 2003). Let (Σn, g), with n ≥ 2, be a compact Riemannian manifold
with boundary. If ḡ ∈ [g] satisfies RΣ

ḡ = RΣ
g ≤ 0 and H∂Σ

ḡ = H∂Σ
g ≤ 0, then ḡ = g.
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The second result, due to T. Cruz and A. S. Santos [16, Proposition 5.3], establishes
conditions under which Yamabe metrics on compact manifolds with boundary are Einstein:

Proposition 2.8 (Cruz-Santos, 2023). Let Σn, with n ≥ 3, be a compact manifold with
boundary such that the Yamabe invariant σ1,0(Σ, ∂Σ) is negative. Suppose g is a metric on
Σ that achieves the Yamabe invariant, that is,

Q1,0
g (Σ, ∂Σ) = σ1,0(Σ, ∂Σ).

Then every Yamabe metric in [g] is Einstein with a totally geodesic boundary.

To conclude this subsection, we state a lemma due to the second-named author [30]. This
result, inspired by the techniques of Micallef and Moraru [33] and Moraru [34], will also be
used in the proof of Theorem B.

Lemma 2.9 (Mendes, 2019). Let f ∈ C1([0, δ)) and η, ξ, ρ ∈ C0([0, δ)) be functions satisfying
max{f, ρ} ≥ 0, ξ ≥ 0, η > 0, and f(0) = 0. If

f ′(t)η(t) − f(t)ρ(t) ≤
∫ t

0
f(s)ξ(s)ds, ∀t ∈ [0, δ),

then f ≤ 0. In particular, if f is non-negative, then f ≡ 0.

3. Proof of Theorem A

In this section, we present the proof of Theorem A, inspired by the work of G. J. Galloway
and H. C. Jang [25]. Before proceeding, however, we will establish an auxiliary result
analogous to Lemma 5.2 in [6], which Galloway and Jang utilized in their proof of Theorem 3:

Lemma 3.1. Let (Mn+1, g), with n ≥ 2, be a Riemannian manifold with boundary, and let Σ
be a compact free boundary hypersurface in (M, g) whose mean curvature satisfies HΣ ≤ nϵ

and HΣ ̸≡ nϵ, where ϵ = 0 or 1 is fixed. Then, for any r > 0, there exists a compact
free boundary hypersurface Σ′ in (M, g) that lies within an outer r-neighborhood of Σ in M ,
satisfies HΣ′

< nϵ, and is disjoint from Σ, i.e. Σ ∩ Σ′ = ∅. Moreover, Σ′ is a graph over Σ.

Proof. Consider the tensor K = −ϵg and the free boundary null mean curvature flow
F : Σ × [0, T ) → (M, g,K) defined by

(3.1)



d

dt
F = −θ+N on Σ × [0, T ),

F (∂Σ, t) ⊂ ∂M, ∀t ∈ [0, T ),

⟨N, ϱ ◦ F ⟩ = 0 on ∂Σ × [0, T ).

Thus, for ϵ = 0, the flow (3.1) takes the form of the flow (2.2), which, as mentioned earlier,
has a solution for a small time T > 0. In the case ϵ = 1, the proof of the existence of (3.1)
for small time can be carried out in a manner entirely analogous to the proof of the existence
of (2.2).
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To conclude the proof of the lemma, we will use the maximum principle for parabolic
equations (Theorem 2.4) to ensure that θ+ < 0 on Σt = F (Σ, t) for every t ∈ (0, T ).

First, it follows from (2.1) and (3.1) that
∂θ+

∂t
= −Ltθ

+ = ∆θ+ − 2⟨X,∇θ+⟩ − Qθ+,

where
Q = 1

2R
Σ − (µ+ J(N)) − 1

2 |χ+|2 − |X|2 + divX − 1
2(θ+)2 + θ+τ,

with all geometric quantities computed on Σt.
Now, fix T0 ∈ (0, T ) and define u : Σ × [0, T0] → R by u = −e−tθ+. We aim to verify

that u satisfies conditions (i), (ii), and (iii) of Theorem 2.4. Since HΣ ≤ nϵ, it follows that
θ+ = HΣ − nϵ ≤ 0 on Σ. Therefore, condition (i) holds, i.e. u(·, 0) ≥ 0.

To verify condition (ii), observe that(
∂

∂t
− ∆

)
u = ∂

∂t
(−e−tθ+) + ∆(e−tθ+)

= e−tθ+ − e−t∂θ
+

∂t
+ e−t∆θ+

= −u− e−t(∆θ+ − 2⟨X,∇θ+⟩ − Qθ+) + e−t∆θ+

= −2⟨X,∇u⟩ − (Q + 1)u.

Therefore, it follows that
Lu = ∂u

∂t
+ Pu = 0,

where Pu = −∆u+ 2⟨X,∇u⟩ + (Q + 1)u. This shows that condition (ii) is satisfied.
Finally, it follows from Proposition 2.6 that ∂θ+

∂ν
= II∂M(N,N)θ+ and, therefore,

∂u

∂ν
= II∂M(N,N)u on ∂Σt.

Thus, defining f : R × Σ × [0, T0] → R by f(s, x, t) = II∂M(N,N)s, we have:
(a) f(0, x, t) = 0;
(b) |f(s, x, t) − f(0, x, t)| = | II∂M(N,N)| · |s|.

This ensures that condition (iii) is also satisfied. Since u(·, 0) ̸≡ 0, because HΣ ̸≡ nϵ, it
follows from Theorem 2.4 that u > 0 in Σ × (0, T0) ∪ int Σ × {T0}. Since this holds for every
T0 ∈ (0, T ), we have θ+ < 0 in Σt for each t ∈ (0, T ).

Therefore, the flow F evolves the hypersurface Σ in the direction of N . In particular, for
sufficiently small t > 0, Σt will be a properly embedded hypersurface contained within an
r-neighborhood exterior to Σ and satisfying Σ ∩ Σt = ∅. Hence, we can take Σ′ = Σt. □

Before proceeding to the proof of Theorem A, we present an important definition:
Let (Mn+1, g), with n ≥ 2, be a Riemannian manifold with boundary, and let Σn ⊂ Mn+1

be a compact, properly embedded hypersurface. Assume H0 ∈ R is such that HΣ ≤ H0. If



RIGIDITY RESULTS FOR FREE BOUNDARY HYPERSURFACES 16

Σ separates M , we say that Σ is weakly outermost with respect to H0 if no hypersurface Σ′,
homologous to Σ and contained in the exterior M+ of Σ, has mean curvature HΣ′

< H0.
Furthermore, Σ is said to be locally weakly outermost with respect to H0 if there exists a
neighborhood U of Σ in M such that Σ is weakly outermost with respect to H0 in (U, g|U).

This definition appears in [25], with the only difference being that, here, we emphasize the
role of the constant H0.

With this definition in place, we can proceed to the proof of our first theorem:

Proof of Theorem A. Consider the initial data set (M, g,K) with K = −ϵg.
We assert that (M, g,K) satisfies the DEC. Indeed, considering {e1, . . . , en+1} as a local

orthonormal frame on M , we have

trK =
n+1∑
i=1

K(ei, ei) = −(n+ 1)ϵ,

and
|K|2 =

n+1∑
i,j=1

K(ei, ej)2 = (n+ 1)ϵ2.

Thus, we deduce
µ = 1

2(RM + (trK)2 − |K|2)

= 1
2(RM + (n+ 1)nϵ2)

= 1
2(RM + (n+ 1)nϵ),

where the last equality follows from the fact that ϵ = 0 or ϵ = 1. Then, by hypothesis (1),
we have µ ≥ 0. Moreover,

J = div(K − (trK)g) = div(nϵg) = 0.

Thus, µ− |J | ≥ 0, and the dominant energy condition is satisfied.
On the other hand, since π = K − (trK)g = nϵg and (ιϱπ)⊤ = π(ϱ, ·)|∂M , it follows that

(ιϱπ)⊤ = nϵg(ϱ, ·)|∂M = 0,

given that ϱ is normal to the boundary of M . Thus, the boundary dominant energy condition
also holds, as H∂M ≥ 0 = |(ιϱπ)⊤|.

Claim 1: Σ is a MOTS that is locally weakly outermost in (M, g,K = −ϵg).
First, observe that the null mean curvature θ+ of a hypersurface Σ′ in (M, g,K = −ϵg)

is given by θ+ = HΣ′ − nϵ. Hence, asserting that Σ is a MOTS that is locally weakly
outermost in (M, g,K = −ϵg) is equivalent to saying that HΣ ≡ nϵ and that Σ is locally
weakly outermost in (M, g) with respect to H0 = nϵ. Therefore, we only need to verify that
HΣ = nϵ on Σ, due to hypothesis (4) of the theorem.
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Suppose HΣ ̸≡ nϵ. Since HΣ ≤ nϵ, it follows from Lemma 3.1 that, given an outer
neighborhood U of Σ in M , there exists a hypersurface Σ′ ⊂ U , homologous to Σ in U , such
that HΣ′

< nϵ, which contradicts the fact that Σ is locally weakly outermost with respect to
H0 = nϵ. Therefore, HΣ ≡ nϵ.

Claim 2: Σ is a stable MOTS in (M, g,K = −ϵg).
We aim to prove the existence of a positive function ϕ ∈ C∞(Σ) such that

Lϕ = −∆ϕ+ 2⟨X,∇ϕ⟩ + (Q− |X|2 + divX)ϕ ≥ 0 on Σ,

Bϕ = ∂ϕ

∂ν
− II∂M(N,N)ϕ = 0 on ∂Σ,

where
Q = 1

2R
Σ − (µ+ J(N)) − 1

2 |χ+|2.

To prove this, observe that K(N, ·)|Σ = −ϵg(N, ·)|Σ = 0 (as N is normal to Σ), so X = 0.
Moreover, we previously established that µ = 1

2(RM + (n + 1)nϵ) and J = 0. Hence, the
stability operator for MOTS reduces to

Lϕ = −∆ϕ+Qϕ,

where
Q = 1

2(RΣ −RM − (n+ 1)nϵ− |χ+|2).

In particular, L is symmetric. Thus, there exists a positive eigenfunction ϕ1 of L, associated
with the first eigenvalue λ1(L), satisfying the Robin boundary condition:

Lϕ1 = λ1(L)ϕ1 on Σ,

Bϕ1 = 0 on ∂Σ.

We claim that λ1(L) ≥ 0. Suppose, by contradiction, that λ1(L) < 0. Considering a
variation (Σt) of Σ in M with variational vector field V = ϕ1N , it follows from (2.1) that

(θ+)′(0) = Lϕ1 = λ1(L)ϕ1 < 0,

where (θ+)′(t) denotes the derivative of θ+(t) with respect to t. Hence, θ+(t) < 0 for
sufficiently small t > 0, contradicting the fact that Σ is a locally weakly outermost MOTS.
This proves that λ1(L) ≥ 0, ensuring that Σ is stable.

Now, under the assumptions of Theorem 2.3, it follows that there exists an outer
neighborhood V ∼= [0, δ) × Σ of Σ in M with coordinates (t, x) in V such that the metric g
can be expressed as

g = φ2dt2 + hijdx
idxj on V,

where φ = φ(t, x) is positive, ht = hij(t, x)dxidxj is the induced metric on Σt
∼= {t} × Σ,

and Σt is a free boundary MOTS in (M, g,K = −ϵg) for each t ∈ [0, δ). Moreover, it follows
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from Proposition 2.6 that
∂φ

∂νt

= II∂M(Nt, Nt)φ on ∂Σt,

where νt is the outward unit normal to ∂Σt in (Σt, ht).
Claim 3: φ is constant on each Σt.
Indeed, since Σt is a MOTS for every t ∈ [0, δ) and ∂t = φNt is the variational vector field

of the family (Σt), it follows from (2.1) that

0 = ∂θ+

∂t
= Ltφ = −∆φ+ 2⟨Xt,∇φ⟩ + (Qt − |Xt|2 + divXt)φ,

where
Qt = 1

2R
Σt − (µ+ J(Nt)) − 1

2 |χ+
t |2.

On the other hand, since K(Nt, ·)|Σt = −ϵg(Nt, ·)|Σt = 0, we have Xt = 0. Moreover, as
noted above, µ = 1

2(RM + ϵ(n+ 1)n) and J = 0. Therefore,

−∆φ+
(1

2R
Σt − Pt

)
φ = 0 on Σt,

where

Pt := 1
2(RM + ϵ(n+ 1)n+ |χ+

t |2) ≥ 0.

Furthermore, note that the mean curvature H∂M of ∂M in (M, g) along ∂Σt can be
expressed as

H∂M = H∂Σt + II∂M(Nt, Nt),

where H∂Σt is the mean curvature of ∂Σt in (Σt, ht). This follows because Σt is free boundary
in (M, g) (see the proof of Proposition 4.1 in the next section). Thus, along ∂Σt, we have

∂φ

∂νt

+H∂Σtφ = II∂M(Nt, Nt)φ+H∂Σtφ

= H∂Mφ

≥ 0.

It then follows from Lemma 2.1 that φ is constant on Σt, Pt ≡ 0, and (Σt, ht) is Ricci-flat
with a totally geodesic boundary for each t ∈ [0, δ).

By making a change of variable if necessary, we can assume, without loss of generality,
that φ ≡ 1. Thus, we have

g = dt2 + hijdx
idxj on V.

On the other hand, since Pt ≡ 0, we have χ+
t = 0, i.e.

χ+
t = K|Σt + At = −ϵht + At = 0,
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where At is the second fundamental form of Σt in (M, g). Therefore, At = ϵht, which in
coordinates means that

∂hij

∂t
= 2ϵhij.

Thus,
hij(t, x) = e2ϵthij(0, x).

Finally, taking h = h0 = g|Σ, it follows that g|V = dt2 + e2ϵth, where (Σ, h) is Ricci-flat
with a totally geodesic boundary, as desired. □

One consequence of Theorem A is the following:

Corollary 3.2. Under the assumptions of Theorem A, if (M, g) is complete, then (M+, g|M+)
is isometric to ([0,∞) × Σ, dt2 + e2ϵth), where h = g|Σ and (Σ, h) is Ricci-flat with a totally
geodesic boundary.

In the preceding result, it suffices for (M+, g|M+) to be complete.
To prove Corollary 3.2, we can follow the same reasoning as in the proof of Theorem 3.1

in [25].

Example 3.3. Consider the (n+ 1)-dimensional manifold

Nn+1 = {x = (x1, . . . , xn+1) ∈ Rn+1 | r(x) ≥ (m/2)
1

n−1 }

equipped with the spatial Schwarzschild metric

gSch =
(

1 + m

2rn−1

) 4
n−1

δ,

where m > 0, δ is the Euclidean metric, and r(x) = |x| denotes the Euclidean distance from
x ∈ N to the origin. Standard computations show that the scalar curvature of (N, gSch)
vanishes.

Furthermore, the mean curvature of the boundary S = {r = (m
2 )

1
n−1 } of N is zero. More

generally, the mean curvature of a sphere S ′ = {r = r0} is given by

HS′ = n

r0

(
1 − m

rn−1
0 + m

2

)
.

In particular, we have HS′
> 0 for r0 > (m

2 )
1

n−1 . By the maximum principle, this implies
that S is weakly outermost with respect to H0 = 0 (see also Proposition 2.2 in [26]).

This confirms that (N, gSch) satisfies all the hypotheses of Theorem 3 for ϵ = 0, except for
condition (3). However, the conclusion of Theorem 3 does not hold.

Now, consider an extension of this example. Let Mn+1 be the manifold with boundary

Mn+1 = {x = (x1, . . . , xn+1) ∈ Rn+1 \ {0} | xn+1 ≥ 0}

equipped with the metric

g =
(

1 + m

2rn−1

) 4
n−1

δ.
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The boundary ∂M of M has zero mean curvature; in fact, ∂M is totally geodesic in (M, g).
Furthermore, the hemisphere Σ = {r = (m

2 )
1

n−1 }∩{xn+1 ≥ 0} is a free boundary hypersurface
in (M, g). As before, all the hypotheses of Theorem A are satisfied, except for condition (3).
This example demonstrates that condition (3) in Theorem A is necessary when ϵ = 0.

Example 3.4. Consider the (n+1)-dimensional manifold Nn+1 = [rm,∞)×Sn equipped with
the AdS-Schwarzschild metric

gAdS-Sch = V (r)−1dr2 + r2hSn ,

where
rm = (2m)

1
n−1 , V (r) = 1 + r2 − 2m

rn−1 ,

and hSn is the standard round metric of constant curvature one on Sn.
It follows that (N, gAdS-Sch) has constant scalar curvature −(n + 1)n. Furthermore, the

mean curvature of a slice {r0} × Sn is given by

H(r0) = n
V (r0)

1
2

r0
.

In particular, the boundary S = {rm} × Sn of N has constant mean curvature H(rm) = n;
and for r0 > rm, we have H(r0) > n. Thus, S is weakly outermost with respect to H0 = n

(see Proposition 2.2 in [26]). This confirms that condition (3) in Theorem 3, as pointed out
by Galloway and Jang [25, Remark 1], is also necessary when ϵ = 1.

Now, we extend this example by considering the manifold with boundary M = (r+,∞)×Sn
+

equipped with the metric
g = V (r)−1dr2 + r2hSn

+
,

where Sn
+ is a hemisphere of Sn, and hSn

+
is the induced metric on Sn

+. Here, r+ is the unique
positive number such that V (r+) = 0. This example satisfies all the hypotheses of Theorem A
for ϵ = 1, except for condition (3).

Example 3.5. As a final example in this section, consider the manifold Nn+1 = [r0,∞) × T n

equipped with the Kottler metric

gK =
(
r2 − 2m

rn−1

)−1
dr2 + r2h,

where r0 > (2m)
1

n+1 and h is a flat metric on T n. The scalar curvature of (N, gK) is constant
equals −(n+ 1)n, and the mean curvature of a slice {r} × T n is given by

H(r) = n
(r2 − 2m

rn−1 ) 1
2

r
< n.

Moreover, the boundary {r0}×T n of N does not support a metric of positive scalar curvature.
This example demonstrates that condition (4) in Theorem 3 is also necessary when ϵ = 1.
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To extend this example to the case of free boundary hypersurfaces, consider the manifold
Mn+1 = (r+,∞) × [a, b] × T n−1 endowed with the Riemannian metric

g =
(
r2 − 2m

rn−1

)−1
dr2 + r2h0,

where r+ = (2m)
1

n+1 , a < b, and h0 is a flat metric on [a, b] × T n−1. This example satisfies
all the hypotheses of Theorem A for ϵ = 1, except for condition (4).

4. Proof of Theorem B

The goal of this section is to prove Theorem B. However, before doing so, we will present
and prove several auxiliary results. The first of these is a volume estimate for compact, free
boundary stable MOTS with a negative Yamabe invariant:

Proposition 4.1. Let (Mn+1, g,K), with n ≥ 3, be an initial data set with boundary, and
let Σn be a compact, free boundary stable MOTS in (Mn+1, g,K).

(1) If µ+ J(N) ≥ −c on Σ for some constant c > 0, H∂M ≥ |(ιϱπ)⊤| on ∂M , and Σ has
Yamabe invariant σ1,0(Σ, ∂Σ) < 0, then

(4.1) vol(Σ) ≥
(

|σ1,0(Σ, ∂Σ)|
2c

)n
2

.

(2) If µ+ J(N) ≥ 0 on Σ, H∂M − |(ιϱπ)⊤| ≥ −c̄ on ∂M for some constant c̄ > 0, and Σ
has Yamabe invariant σ0,1(Σ, ∂Σ) < 0, then

vol(∂Σ) ≥
(

|σ0,1(Σ, ∂Σ)|
2c̄

)n−1

.

The above proposition is the analog of Theorem 1 in [8] for compact free boundary MOTS
in initial data sets with boundary.

Proof. We will begin with the proof of item (1).
First, since Σ is a stable MOTS, it follows from Lemma 2.2 that λ1(L0) ≥ 0, i.e.

0 ≤ λ1(L0) = inf
u∈C∞(Σ)\{0}

∫
Σ
(|∇u|2 +Qu2)dv −

∫
∂Σ

(II∂M(N,N) − ⟨X, ν⟩)u2ds∫
Σ
u2dv

.

Thus, for u ∈ C∞(Σ), we have:

0 ≤
∫

Σ
(2|∇u|2 + 2Qu2)dv − 2

∫
∂Σ

(II∂M(N,N) − ⟨X, ν⟩)u2ds

=
∫

Σ
(2|∇u|2 + (RΣ − 2(µ+ J(N)) − |χ+|2)u2)dv

−2
∫

∂Σ
(II∂M(N,N) − ⟨X, ν⟩)u2ds

≤
∫

Σ
(2|∇u|2 + (RΣ + 2c)u2)dv − 2

∫
∂Σ

(II∂M(N,N) − ⟨X, ν⟩)u2ds,(4.2)
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where we have used that µ+ J(N) ≥ −c on Σ.
On the other hand, since Σ is free boundary in (M, g), it follows that the conormal ν

of ∂Σ in Σ, with respect to the induced metric h = g|Σ, coincides with the conormal ϱ of
∂M in (M, g) along ∂Σ. Thus, at each point p ∈ ∂Σ, we can choose an orthonormal frame
{e1, . . . , en−1, en} of Tp∂M such that en = N , i.e. such that {e1, . . . , en−1} is an orthonormal
frame of Tp∂Σ. Therefore,

H∂M =
n−1∑
i=1

⟨∇ei
ϱ, ei⟩ + ⟨∇Nϱ,N⟩

=
n−1∑
i=1

⟨∇ei
ν, ei⟩ + II∂M(N,N)

= H∂Σ + II∂M(N,N);

which, when substituted into (4.2), gives:

(4.3) 0 ≤
∫

Σ
(2|∇u|2 + (RΣ + 2c)u2)dv − 2

∫
∂Σ

(H∂M −H∂Σ − ⟨X, ν⟩)u2ds

for every function u ∈ C∞(Σ). Therefore, defining an = 4(n−1)
n−2 , it follows from (4.3), together

with Hölder’s inequality, that

0 ≤
∫

Σ
(an|∇u|2 +RΣu2)dv + 2c vol(Σ) 2

n

(∫
Σ
u

2n
n−2dv

)n−2
n

+2
∫

∂Σ
H∂Σu2ds− 2

∫
∂Σ

(H∂M − ⟨X, ν⟩)u2ds,(4.4)

since an > 2 for all n ≥ 3.
Along ∂Σ, we have

(ιϱπ)⊤(N) = K(ϱ,N) − (trK)⟨ϱ,N⟩ = K(ν,N) = ⟨X, ν⟩,

and
H∂M ≥ |(ιϱπ)⊤| ≥ (ιϱπ)⊤(N),

which implies that
H∂M − ⟨X, ν⟩ = H∂M − (ιϱπ)⊤(N) ≥ 0.

Thus, using the above inequality in (4.4), we obtain

0 ≤

∫
Σ
(an|∇u|2 +RΣu2)dv + 2

∫
∂Σ
H∂Σu2ds( ∫

Σ
u

2n
n−2dv

)n−2
n

+ 2c vol(Σ) 2
n = Q1,0

h (u) + 2c vol(Σ) 2
n ,
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for all u ∈ C∞(Σ) positive. This implies that

0 ≤ inf
u∈C∞(Σ), u>0

Q1,0
h (u) + 2c vol(Σ) 2

n

= Q1,0
h (Σ, ∂Σ) + 2c vol(Σ) 2

n

≤ σ1,0(Σ, ∂Σ) + 2c vol(Σ) 2
n ,

which gives

vol(Σ) ≥
(

|σ1,0(Σ, ∂Σ)|
2c

)n
2

,

as we intended to prove.
To prove item (2), we start from the inequality

0 ≤
∫

Σ
(2|∇u|2 + (RΣ − 2(µ+ J(N)) − |χ+|2)u2)dv − 2

∫
∂Σ

(II∂M(N,N) − ⟨X, ν⟩)u2ds,

which, as before, holds for all u ∈ C∞(Σ). In this case, since µ+ J(N) ≥ 0 on Σ and

II∂M(N,N) − ⟨X, ν⟩ = H∂M −H∂Σ − (ιϱπ)⊤(N)

≥ H∂M − |(ιϱπ)⊤| −H∂Σ

≥ −c̄−H∂Σ,

we have
0 ≤

∫
Σ
(2|∇u|2 +RΣu2)dv + 2

∫
∂Σ
H∂Σu2ds+ 2c̄

∫
∂Σ
u2ds

for all u ∈ C∞(Σ).
Once again, it follows from Hölder’s inequality and the fact that an > 2 that

0 ≤
∫

Σ
(an|∇u|2 +RΣu2)dv + 2

∫
∂Σ
H∂Σu2ds+ 2c̄ vol(∂Σ)

1
n−1

(∫
∂Σ
u

2(n−1)
n−2 ds

)n−2
n−1

.

Therefore, dividing the above inequality by(∫
∂Σ
u

2(n−1)
n−2 ds

)n−2
n−1

and taking the infimum over all functions u ∈ C∞(Σ) with u > 0, we obtain:

0 ≤ Q0,1
h (Σ, ∂Σ) + 2c̄ vol(∂Σ)

1
n−1 ≤ σ0,1(Σ, ∂Σ) + 2c̄ vol(∂Σ)

1
n−1 ,

which establishes the result. □

The next proposition is an infinitesimal rigidity result that we obtain by assuming the
volume of Σ saturates inequality (4.1).

Proposition 4.2 (Infinitesimal rigidity). Under the hypotheses of Proposition 4.1, if equality
in (4.1) holds, then:
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• (Σ, h) is Einstein with scalar curvature RΣ = −2c and a totally geodesic boundary,
where h = g|Σ;

• µ+ J(N) = −c and χ+ = 0 on Σ;
• H∂M = |(ιϱπ)⊤| = ⟨X, ν⟩ on ∂Σ;
• λ1(L0) = 0.

Proof. From the solution of the Yamabe problem, we know that there exists a positive
function ϕ ∈ C∞(Σ) that attains the Yamabe constant Q1,0

h (Σ, ∂Σ), i.e.

Q1,0
h (ϕ) = Q1,0

h (Σ, ∂Σ).

On the other hand, it follows from the end of the proof of item (1) of Proposition 4.1,
along with equality in (4.1), that

0 ≤ Q1,0
h (Σ, ∂Σ) + 2c vol(Σ) 2

n ≤ σ1,0(Σ, ∂Σ) + 2c vol(Σ) 2
n = 0.(4.5)

Therefore,

Q1,0
h (ϕ) + 2c vol(Σ) 2

n = Q1,0
h (Σ, ∂Σ) + 2c vol(Σ) 2

n = 0,

which, by multiplying by (
∫

Σ ϕ
2n

n−2dv)n−2
n , implies∫

Σ
(an|∇ϕ|2 +RΣϕ2)dv + 2

∫
∂Σ
HΣϕ2ds+ 2c vol(Σ) 2

n

(∫
Σ
ϕ

2n
n−2dv

)n−2
n

= 0.

Since Σ is a stable MOTS, it follows from Lemma 2.2 that

0 ≤ 2λ1(L0)
∫

Σ
ϕ2dv

≤ 2
(∫

Σ
(|∇ϕ|2 +Qϕ2)dv −

∫
∂Σ

(II∂M(N,N) − ⟨X, ν⟩)ϕ2ds
)

=
∫

Σ
(2|∇ϕ|2 + (RΣ − 2(µ+ J(N)) − |χ+|2)ϕ2)dv − 2

∫
∂Σ

(H∂M −H∂Σ − ⟨X, ν⟩)ϕ2ds

≤
∫

Σ
(an|∇ϕ|2 + (RΣ + 2c)ϕ2)dv + 2

∫
∂Σ
H∂Σϕ2ds

≤
∫

Σ
(an|∇ϕ|2 +RΣϕ2)dv + 2

∫
∂Σ
H∂Σϕ2ds+ 2c vol(Σ) 2

n

(∫
Σ
ϕ

2n
n−2dv

)n−2
n

= 0,

where, above, we have used that an > 2, µ + J(N) ≥ −c on Σ, II∂M(N,N) = H∂M − HΣ,
and

H∂M − ⟨X, ν⟩ = H∂M − (ιϱπ)⊤(N) ≥ H∂M − |(ιϱπ)⊤| ≥ 0 on ∂Σ.
Therefore, all the above inequalities are indeed equalities. Hence, we obtain:

• λ1(L0) = 0;
• µ+ J(N) = −c and χ+ = 0 on Σ;
• H∂M = |(ιϱπ)⊤| = ⟨X, ν⟩ on ∂Σ.

Additionally, |∇ϕ|2 ≡ 0, that is, ϕ is constant, since an > 2.
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Finally, from (4.5), we conclude that Q1,0
h (Σ, ∂Σ) = σ1,0(Σ, ∂Σ). Thus, by Proposition 2.8,

we obtain that the Yamabe metric h̄ = ϕ
4

n−2h on Σ is Einstein with a totally geodesic
boundary; the same holds for h, since ϕ is constant, which concludes the proof of the
proposition. □

For the next lemma, consider the operator

L∗ψ = −∆ψ − 2⟨X,∇ψ⟩ + (Q− |X|2 − divX)ψ, ψ ∈ C∞(Σ),

called the formal adjoint operator of L; this is because, by the divergence theorem,∫
Σ
ϕL∗ψ dv +

∫
∂Σ
ϕB∗ψ ds =

∫
Σ
ψLϕdv +

∫
∂Σ
ψBϕds

for all ϕ, ψ ∈ C∞(Σ), where

B∗ψ := ∂ψ

∂ν
− (II∂M(N,N) − 2⟨X, ν⟩)ψ.

Lemma 4.3. Under the assumptions of Proposition 4.2, we have that λ = 0 is a simple
eigenvalue of L on Σ with Robin boundary condition Bϕ = 0, and its associated eigenfunctions
can be chosen positive. The same holds for the formal adjoint operator L∗ of L on Σ with
Robin boundary condition B∗ϕ∗ = 0.

The proof of the above lemma is entirely analogous to the proof of Lemma 3.5 in [32] (with
Proposition 4.2 playing the role of Proposition 3.3), and therefore it will be omitted.

Lemma 4.4. Under the hypotheses of Prop. 4.2, there exist a neighborhood V ∼= (−δ, δ) × Σ
of Σ ∼= {0} × Σ in M and a positive function φ : V → R such that:

(1) g|V has the orthogonal decomposition,

g|V = φ2dt2 + ht,

where ht is the induced metric on Σt
∼= {t} × Σ;

(2) Each Σt is a free boundary hypersurface in (M, g,K) with constant null mean
curvature θ+(t) with respect to the outward unit normal Nt = φ−1 ∂

∂t
, where N0 = N ;

(3) ∂φ
∂νt

= II∂M(Nt, Nt)φ on ∂Σt, where νt is the outward unit normal to ∂Σt in (Σt, ht).

Once again, the proof of the above lemma is entirely analogous to the proof of Lemma 3.6
in [32] (with Lemma 4.3 playing the role of Lemma 3.5), and therefore it will also be omitted.

We can now proceed to the proof of Theorem B.

Proof of Theorem B. First, since µ+ J(N) ≥ µ− |J | ≥ −c on M+ and, in particular, on Σ,
it follows from item (1) of Proposition 4.1 that

vol(Σ) ≥
(

|σ1,0(Σ, ∂Σ)|
2c

)n
2

.

Furthermore, if equality holds, Proposition 4.2 furnishes that (Σ, h) is Einstein with scalar
curvature RΣ = −2c and a totally geodesic boundary. Moreover, we can apply Lemma 4.4 to
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guarantee the existence of a foliation (Σt)0≤t<δ of an outer neighborhood V of Σ = Σ0 in M

such that each leaf Σt is a free boundary hypersurface with constant null mean curvature
θ+ = θ+(t) in (M, g,K). Furthermore, the metric g can be written as

g = φ2dt2 + ht on V ∼= [0, δ) × Σ,

where ht = g|Σt is the induced metric on Σt.
On the other hand, from (2.1), it follows that

dθ+

dt
= −∆φ+ 2⟨X,∇φ⟩ +

(
Q− |X|2 + divX − 1

2(θ+)2 + θ+τ
)
φ on Σt,(4.6)

for each t ∈ [0, δ). Thus, taking Y = X − φ−1∇φ and observing that

div Y = divX − ∆φ
φ

+ |∇φ|2

φ2 and |Y |2 = |X|2 − 2⟨X,∇φ⟩
φ

+ |∇φ|2

φ2 ,

we get, from (4.6), that
1
φ

dθ+

dt
= div Y − |Y |2 +Q− 1

2(θ+)2 + θ+τ ≤ div Y − |Y |2 +Q+ θ+τ on Σt,

for each t ∈ [0, δ). Therefore, given u ∈ C∞(Σt), we have:
u2

φ

dθ+

dt
− u2θ+τ ≤ u2 div Y − u2|Y |2 +Qu2

= div(u2Y ) − 2u⟨∇u, Y ⟩ − u2|Y |2 +
(1

2R
Σt − (µ+ J(Nt)) − 1

2 |χ+
t |2
)
u2

≤ div(u2Y ) + 2|u||∇u||Y | − u2|Y |2 +
(1

2R
Σt − (µ− |J |)

)
u2

≤ div(u2Y ) + |∇u|2 +
(1

2R
Σt + c

)
u2,(4.7)

where, above, we have used the Cauchy-Schwarz inequality, along with the fact that

µ+ J(Nt) ≥ µ− |J | ≥ −c on M+.

Thus, integrating (4.7) over Σt and noting that dθ+

dt
and θ+ are constants on Σt, we obtain

2
(
dθ+

dt

∫
Σt

u2

φ
dvt − θ+

∫
Σt

τu2dvt

)
≤

∫
Σt

(2|∇u|2 +RΣtu2)dvt + 2c
∫

Σt

u2dvt

+2
∫

∂Σt

u2⟨Y, νt⟩dst,(4.8)

where, above, we have used the divergence theorem.
Now, replacing Y by X − φ−1∇φ and using that

∂φ

∂νt

= II∂M(Nt, Nt)φ = (H∂M −H∂Σt)φ



RIGIDITY RESULTS FOR FREE BOUNDARY HYPERSURFACES 27

(see Lemma 4.4), we obtain:∫
∂Σt

u2⟨Y, νt⟩dst =
∫

∂Σt

u2⟨X − φ−1∇φ, νt⟩dst

=
∫

∂Σt

u2(⟨X, νt⟩ +H∂Σt −H∂M)dst.

On the other hand, using the BDEC as done in the proof of Proposition 4.1, we get that
⟨X, νt⟩ −H∂M ≤ 0 on ∂Σt. Therefore,

(4.9)
∫

∂Σt

u2⟨Y, νt⟩dst ≤
∫

∂Σt

u2H∂Σtdst.

Thus, substituting (4.9) into (4.8) and using the fact that an = 4(n−1)
n−2 > 2 for all n ≥ 3,

along with Hölder’s inequality, we obtain

2
(
dθ+

dt

∫
Σt

u2

φ
dvt − θ+

∫
Σt

τu2dvt

)
≤

∫
Σt

(an|∇u|2 +RΣtu2)dvt + 2
∫

∂Σt

u2H∂Σtdst

+2c vol(Σt)
2
n

(∫
Σt

u
2n

n−2dvt

)n−2
n

(4.10)

for all u ∈ C∞(Σt) and all t ∈ [0, δ).
From the solution to the Yamabe problem, together with Theorem 2.7, we know that, for

each t ∈ [0, δ), there exists a unique Yamabe metric h̄t in the conformal class of ht with
constant scalar curvature −2c and minimal boundary. Let ut ∈ C∞(Σt), ut > 0, be such that
h̄t = u

4/(n−2)
t ht. Substituting u = ut into equation (4.10), we obtain

2
(
dθ+

dt

∫
Σt

u2
t

φ
dvt − θ+

∫
Σt

τu2
tdvt

)
( ∫

Σt

u
2n

n−2
t dvt

)n−2
n

≤

∫
Σt

(an|∇ut|2 +RΣtu2
t )dvt + 2

∫
∂Σt

u2
tH

∂Σtdst( ∫
Σt

u
2n

n−2
t dvt

)n−2
n

+2c vol(Σt)
2
n

= Q1,0
ht

(ut) + 2c vol(Σt)
2
n

= Q1,0
ht

(Σt, ∂Σt) + 2c vol(Σt)
2
n

≤ σ1,0(Σ, ∂Σ) + 2c vol(Σt)
2
n

= 2c vol(Σt)
2
n − 2c vol(Σ) 2

n

= 2c
∫ t

0

d

dr
(vol(Σr)

2
n )dr

= 4c
n

∫ t

0
vol(Σr)

2−n
n
d

dr
vol(Σr)dr(4.11)

for each t ∈ [0, δ). Above, we have used that Σt is diffeomorphic to Σ and σ1,0(Σ, ∂Σ) is a
topological invariant of Σ. We have also applied the fundamental theorem of calculus and
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the assumption that

vol(Σ) =
(

|σ1,0(Σ, ∂Σ)|
2c

)n
2

.

On the other hand, using the assumption that K is n-convex on M+, we have trΣtK ≥ 0
for each t ∈ [0, δ). Thus, θ+(t) = trΣtK +HΣt ≥ HΣt . Therefore, from the first variation of
volume formula, along with (4.11), we get

dθ+

dt

∫
Σt

u2
t

φ
dvt − θ+

∫
Σt

τu2
tdvt( ∫

Σt

u
2n

n−2
t dvt

)n−2
n

≤ 2c
n

∫ t

0
vol(Σr)

2−n
n

( ∫
Σr

HΣrφdvr

)
dr

≤ 2c
n

∫ t

0
θ+(r)

(
vol(Σr)

2−n
n

∫
Σr

φdvr

)
dr.

Thus, defining

f(t) = θ+(t), η(t) =
( ∫

Σt

u2
t

φ
dvt

)( ∫
Σt

u
2n

n−2
t dvt

)− n−2
n

,

ρ(t) =
( ∫

Σt

τu2
tdvt

)( ∫
Σt

u
2n

n−2
t dvt

)− n−2
n

,

and
ξ(t) = 2c

n
vol(Σt)

2−n
n

∫
Σt

φdvt,

we can apply Lemma 2.9 to obtain that θ+(t) ≤ 0 for each t ∈ [0, δ). However, since Σ is
weakly outermost and θ+(t) is constant on Σt, it follows that θ+(t) = 0 for all t ∈ [0, δ).
Therefore, all the above inequalities are, in fact, equalities.

In particular, for each t ∈ [0, δ), we have:
• div Y − |Y |2 +Q = 0 on Σt;
• χ+

t ≡ 0;
• µ+ J(Nt) = µ− |J | = −c on Σt;
• HΣt = θ+(t) = 0, i.e. Σt is a minimal MOTS (in particular, trΣt K = 0);
• ⟨X, νt⟩ −H∂M = 0 on ∂Σt;
• vol(Σt) = vol(Σ).

Additionally, since Σt is a MOTS for each t ∈ [0, δ), we can use (2.1) again to obtain

Lφ = dθ+

dt
= 0 on Σt.

By Lemma 4.4, we get
∂φ

∂νt

− II∂M(Nt, Nt)φ = 0 on ∂Σt.

Thus, we conclude that Σt is stable for each t ∈ [0, δ). Therefore, we can apply Proposition 4.2
to Σt and conclude that H∂Σt = 0 on ∂Σt and Q = 0 on Σt. (From Proposition 4.2, we also
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have that H∂M = |(ιϱπ)⊤| on ∂Σt for each t ∈ [0, δ), that is, the BDEC is saturated along
V ∩ ∂M .)

From div Y − |Y |2 +Q = 0 and Q = 0, we get div Y − |Y |2 = 0, and so∫
Σt

|Y |2dvt =
∫

Σt

div Y dvt

=
∫

∂Σt

⟨Y, νt⟩dst

=
∫

∂Σt

(⟨X, νt⟩ +H∂Σt −H∂M)dst

=
∫

∂Σt

(⟨X, νt⟩ −H∂M)dst

= 0.

Hence Y = X − φ−1∇φ = 0.
Since Σt is a minimal MOTS, we also have that θ−(t) = trΣt K−HΣt = 0 for each t ∈ [0, δ).

Then, by replacing θ+ and φ by θ− and φ− = −φ into (2.1), respectively, we obtain:

0 = dθ−

dt
= −∆φ− + 2⟨X−,∇φ−⟩ + (Q− − |X−|2 + divX−)φ−,(4.12)

where

Q− = 1
2R

Σt − (µ+ J(−Nt)) − 1
2 |χ−

t |2

= −c− (µ+ |J |) − 1
2 |χ−

t |2

= −2|J | − 1
2 |χ−

t |2,(4.13)

and

X− = −X = − 1
φ

∇φ.(4.14)

Substituting equations (4.13) and (4.14) into (4.12), we get:

∆φ+ |∇φ|2

φ
+
(

|J | + 1
4 |χ−

t |2
)
φ = 0.

Since
∂φ

∂νt

= II∂M(Nt, Nt)φ = (H∂M −H∂Σt)φ = H∂Mφ ≥ 0,

integrating over Σt, and using the Divergence Theorem, we have:

0 ≤
∫

∂Σt

∂φ

∂νt

dst =
∫

Σt

∆φdvt = −
∫

Σt

(
|∇φ|2

φ
+
(

|J | + 1
4 |χ−

t |2
)
φ

)
dvt ≤ 0,

so
|∇φ| = |χ−

t | = |J | = 0 on V.
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Thus, φ is constant on Σt and, since X = −φ−1∇φ = 0, we have K(Nt, ·)|Σt = 0.
Furthermore, since χ+

t = K|Σt + At ≡ 0 and χ−
t = K|Σt − At ≡ 0, we have K|Σt ≡ 0.

We conclude that Σt is totally geodesic in (M, g) for each t ∈ [0, δ). Writing g = φ2dt2 +ht

on V ∼= [0, δ) × Σ, and noting that φ = φt depends only on t ∈ [0, δ) and that ht does not
depend on t, since Σt is totally geodesic for each t, we can see that, by a change of variables,
g has the structure of a product metric dt2 + h on V , where (Σ, h) is Einstein with scalar
curvature RΣ = −2c and a totally geodesic boundary.

Finally, using that 0 = J = div(K − (trK)g) = divK − d(trK), K|Σt ≡ 0, At ≡ 0, and
K(Nt, ·)|Σt ≡ 0, we conclude that K = a dt2 on V , where a depends only on t ∈ [0, δ). □

Example 4.5. Let (Σn, hhyp) be an n-dimensional closed hyperbolic Riemannian manifold,
where n ≥ 2. The (n+ 2)-dimensional anti-Nariai spacetime (M̄, ḡ) is given by the manifold

M̄ = R × (0,∞) × Σn

equipped with the Lorentzian metric

ḡ = n

2(−Λ)
(
− sinh2 χdt2 + dχ2 + (n− 1)hhyp

)
,

which satisfies the Einstein vacuum equation

RicM̄ = 2Λ
n
ḡ,

where Λ is a negative cosmological constant and RicM̄ denotes the Ricci tensor of (M̄, ḡ)
(See [14] for a detailed description of the anti-Nariai spacetimes.)

It is straightforward to verify that the second fundamental formK of the sliceM = {t = t0}
vanishes. Furthermore, the local energy density µ and the local current density J of (M, g,K)
(where g is the induced metric on M) are given by µ = Λ and J = 0.

Now, assume that (Σn, hhyp) realizes the Yamabe invariant (this always holds for n = 2
and n = 3, see e.g. [4]):

σ(Σ) =

∫
Σ
RΣdv

vol(Σ)n−2
n

= −n(n− 1) vol(Σ) 2
n = 2Λ vol(Σ, h) 2

n ,

where h = n(n−1)
2(−Λ) hhyp is the induced metric on Σ. Here, RΣ = −n(n − 1), dv, and vol(Σ)

are the scalar curvature, the volume element, and the volume of Σ with respect to hhyp.
Therefore,

vol(Σ, h) =
(

|σ(Σ)|
2(−Λ)

)n
2

.

This provides an example of an initial data set that satisfies all the hypotheses and saturates
the inequality of Theorem 8 (for n = 2) and Theorem 9 (for n ≥ 3).
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In a similar manner, we can construct an initial data set satisfying all the hypotheses
of Theorem B, which also saturates the respective inequality, by considering a compact
hyperbolic manifold (Σn, hhyp) with a totally geodesic boundary.
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