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CHARGED INITIAL DATA SETS
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Abstract. This paper investigates the geometric consequences of equality in
area-charge inequalities for spherical minimal surfaces and, more generally,
for marginally outer trapped surfaces (MOTS), within the framework of the
Einstein-Maxwell equations. We show that, under appropriate energy and
curvature conditions, saturation of the inequality A ≥ 4π(Q2

E + Q2
M) imposes

a rigid geometric structure in a neighborhood of the surface. In particular,
the electric and magnetic fields must be normal to the foliation, and the local
geometry is isometric to a Riemannian product. We establish two main rigidity
theorems: one in the time-symmetric case and another for initial data sets that
are not necessarily time-symmetric. In both cases, equality in the area-charge
bound leads to a precise characterization of the intrinsic and extrinsic geometry
of the initial data near the critical surface.

1. Introduction

In his influential 1999 paper, G. W. Gibbons [17] explores the profound interplay
between geometry and gravitation, with particular emphasis on the role of inverse
mean curvature flow (IMCF) in the understanding of gravitational entropy. Among
the key results discussed is the derivation of an area-charge inequality, which asserts
that, under natural energy conditions, the area A of a closed, stable minimal surface
enclosing an electric or magnetic charge Q in a time-symmetric initial data set must
satisfy

A ≥ 4πQ2.(1.1)
As noted in [17], this inequality also extends to maximal initial data sets that are
not necessarily time-symmetric.

Inequality (1.1) expresses a fundamental geometric constraint imposed by general
relativity: the area of a black hole horizon cannot be arbitrarily small for a given
charge. In other words, if a black hole were to have charge Q but an area smaller
than 4πQ2, it would contradict physical expectations.

More recently, S. Dain, J. L. Jaramillo, and M. Reiris [9] extended inequality (1.1)
to the setting of dynamical black holes without making any symmetry assumptions.
They showed that, if Σ is an orientable, closed, marginally outer trapped surface
satisfying the spacetime stably outermost condition,1 in a spacetime that obeys the
Einstein equations

G + Λh = 8π
(
T EM + T matter) ,

with a non-negative cosmological constant Λ, and where the non-electromagnetic
matter field T matter satisfies the dominant energy condition, then the following

1See Definition 3.2 in [9].
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area-charge inequality holds:
A ≥ 4π(Q2

E + Q2
M),(1.2)

where A, QE, and QM denote the area, electric charge, and magnetic charge of Σ,
respectively. Notably, no assumption is made that the matter fields are electrically
neutral.

The aim of this paper is to investigate the geometric consequences of equality
in (1.1) or (1.2), formulated in terms of initial data. More precisely, we show that,
under suitable conditions, equality in either (1.1) or (1.2) implies that the initial
data set containing Σ exhibits a specific, expected geometric structure in a vicinity
of Σ.

Our first result is the following (see Section 2 for definitions):

Theorem 1.1. Let (M3, g) be a Riemannian three-manifold with scalar curvature
R satisfying

1
2R ≥ Λ + |E|2 + |B|2,(1.3)

where Λ is a non-negative constant representing the cosmological constant, and E
and B are divergence-free vector fields on M representing the electric and magnetic
fields, respectively.

If Σ is an area-minimizing two-sphere embedded in (M, g), then the area, electric
charge, and magnetic charge of Σ satisfy

A ≥ 4π(Q2
E + Q2

M).
Moreover, if equality holds, then there exists a neighborhood U ∼= (−δ, δ) × Σ of Σ
in M such that:

(1) The electric and magnetic fields are normal to the foliation; more precisely,
E = aνt, B = bνt,

for some constants a and b, where νt is the unit normal to Σt
∼= {t} × Σ

along the foliation.
(2) (U, g) is isometric to ((−δ, δ) × Σ, dt2 + g0) for some δ > 0, where the

induced metric g0 on Σ has constant Gaussian curvature
κΣ = a2 + b2.

(3) The cosmological constant Λ equals zero.

Our second result is a generalization of Theorem 1.1 to initial data sets that are
not necessarily time-symmetric. It reads as follows (see Section 2 for definitions):

Theorem 1.2. Let (M3, g, K, E, B) be a three-dimensional initial data set for the
Einstein-Maxwell equations satisfying the charged dominant energy condition

µ + J(v) ≥ Λ + |E|2 + |B|2 − 2⟨E × B, v⟩(1.4)
for every unit vector v ∈ TpM , every point p ∈ M , and some constant Λ ≥ 0.
Assume that E and B are divergence-free and that K is two-convex.

Let Σ be a weakly outermost, spherical MOTS in (M, g, K). Then the area,
electric charge, and magnetic charge of Σ satisfy

A ≥ 4π(Q2
E + Q2

M).
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Moreover, if equality holds, then there exists an outer neighborhood U ∼= [0, δ) × Σ
of Σ in M such that:

(1) The electric and magnetic fields are normal to the foliation; more precisely,
E = aνt, B = bνt,

for some constants a and b, where νt is the unit normal to Σt
∼= {t} × Σ

along the foliation.
(2) (U, g) is isometric to ([0, δ)×Σ, dt2 +g0) for some δ > 0, where the induced

metric g0 on Σ has constant Gaussian curvature
κΣ = a2 + b2.

(3) The second fundamental form satisfies K = fdt2 on U , where f ∈ C∞(U)
depends only on t ∈ [0, δ).

(4) The energy and momentum densities satisfy
µ = a2 + b2, J = 0 on U.

(5) The cosmological constant Λ equals zero.

In Section 2, we derive inequalities (1.3) and (1.4) from the dominant energy
condition for the energy-momentum tensor T matter.

The paper is organized as follows: In Section 2, we present some preliminaries
necessary for a proper understanding of this work. In Section 3, we provide the
proofs of Theorems 1.1 and 1.2. Finally, Section 4 offers a model illustrating these
results.

2. Preliminaries

Let (M3, g, K) be a three-dimensional initial data set in a four-dimensional space-
time (V 4, h); that is, M is a spacelike hypersurface in (V, h) with induced metric g
and second fundamental form K, taken with respect to the future-directed time-
like unit normal to M . Assume that (V, h) satisfies the Einstein equations with
cosmological constant Λ:

G + Λh = 8π
(
T EM + T matter) ,

where G = Rich − 1
2 Rhh is the Einstein tensor of (V, h), T EM is the electromagnetic

energy-momentum tensor, and T matter is the energy-momentum tensor associated
with non-gravitational and non-electromagnetic matter fields.

The electromagnetic energy-momentum tensor T EM is given by

T EM
ab = 1

4π

(
FacFb

c − 1
4FcdF cdhab

)
,

where F is the electromagnetic 2-form, which is also referred to as the Faraday
tensor.

Let u be the future-directed timelike unit normal vector field along M . As is
standard, by the Gauss-Codazzi equations,

µ := G(u, u) = 1
2(R − |K|2 + τ2),

J := G(u, ·) = div(K − τg),
where R is the scalar curvature of (M, g) and τ = tr K is the mean curvature of M
in (V, h) with respect to u.
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The electric and magnetic vector fields E and B on M are defined in such a way
that

Ea = Fabub,

Ba = 1
2ϵabcF bc,

where ϵabc is the induced volume form associated with the metric g. Specifically,
if ϵ̂ denotes the volume form of the spacetime metric h, then ϵabc = udϵ̂dabc. In the
main results of this paper, we assume the absence of charged matter, that is, we
assume that div E = div B = 0.

We refer to (M, g, K, E, B) as initial data for the Einstein-Maxwell equations.
Standard calculations give that

T EM(u, u) = 1
8π

(|E|2 + |B|2),

T EM(u, v) = − 1
4π

⟨E × B, v⟩,

for any vector v tangent to M , where (E×B)a = ϵabcEbBc defines the cross product
of E and B, which is known in the literature as the Poynting vector.

Now assume that T matter satisfies the dominant energy condition:
T matter(X, Y ) ≥ 0 for all future-directed causal vectors X, Y.

Therefore,
G(u, u) + Λh(u, u) = 8π

(
T EM(u, u) + T matter(u, u)

)
≥ 8πT EM(u, u),

and thus
µ ≥ Λ + |E|2 + |B|2.

In this case, if M is maximal (in particular, if M is time-symmetric), then

(2.1) 1
2R ≥ Λ + |E|2 + |B|2.

More generally, when M is not necessarily maximal, it holds that
G(u, u + v) + Λh(u, u + v) ≥ 8πT EM(u, u + v),

and so
µ + J(v) ≥ Λ + |E|2 + |B|2 − 2⟨E × B, v⟩,(2.2)

for every unit vector v tangent to M .
Inequalities (2.1) and (2.2) are commonly referred to as the charged dominant

energy condition and have been considered in numerous situations (see, e.g., [1, 6,
8, 9, 15,17–19,25]).

Now let Σ2 be a closed embedded surface in M3.
In this paper, we assume that Σ and M are orientable; in particular, Σ is two-

sided. Then we fix a unit normal vector field ν along Σ; if Σ separates M , by
convention, we say that ν points to the outside of Σ.

In the sequel, we are going to present some important definitions to our purposes.
The electric and magnetic charges of Σ are defined, respectively, by

QE = 1
4π

∫
Σ

⟨E, ν⟩, QM = 1
4π

∫
Σ

⟨B, ν⟩.
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The null second fundamental forms χ+ and χ− of Σ in (M, g, K) are defined by
χ+ = K|Σ + A, χ− = K|Σ − A,

where A is the second fundamental form of Σ in (M, g) with respect to ν; more
precisely,

A(X, Y ) = g(∇Xν, Y ) for X, Y ∈ X(Σ),
where ∇ is the Levi-Civita connection of (M, g).

The null expansion scalars or the null mean curvatures θ+ and θ− of Σ in
(M, g, K) with respect to ν are defined by

θ+ = tr χ+ = trΣ K + HΣ, θ− = tr χ− = trΣ K − HΣ,

where HΣ = tr A is the mean curvature of Σ in (M, g) with respect to ν. Observe
that θ± = tr χ±.

After R. Penrose, Σ is said to be trapped if both θ+ and θ− are negative.
Restricting our attention to one side, we say that Σ is outer trapped if θ+ is

negative and marginally outer trapped if θ+ vanishes. In the latter case, we refer
to Σ as a marginally outer trapped surface or a MOTS, for short.

Assume that Σ is a MOTS in (M, g, K) with respect to a unit normal ν that is
a boundary in M ; more precisely, ν points towards a top-dimensional submanifold
M+ ⊂ M such that ∂M+ = Σ. Then we say that Σ is outermost (resp. weakly
outermost) if there is no closed embedded surface in M+ with θ+ ≤ 0 (resp. θ+ < 0)
that is homologous to and different from Σ.

We say that Σ minimizes area in M if Σ has the least area in its homology class
in M ; id est, A(Σ) ≤ A(Σ′) for every closed embedded surface Σ′ in M that is
homologous to Σ. Similarly, Σ is said to be outer area-minimizing if Σ minimizes
area in M+.

An important notion that we are going to recall now is the notion of stability
for MOTS introduced by L. Andersson, M. Mars, and W. Simon [3,4].

Let Σ be a MOTS in (M, g, K) with respect to ν and t → Σt be a variation of
Σ = Σ0 in M with variation vector field ∂

∂t |t=0 = ϕν, for some ϕ ∈ C∞(Σ). Denote
by θ±(t) the null expansion scalars of Σt with respect to the unit normal νt, where
ν = νt|t=0. It is well known that (see [4])

∂θ+

∂t

∣∣∣
t=0

= −∆ϕ + 2⟨X, ∇ϕ⟩ + (Q − |X|2 + div X)ϕ,

where ∆ and div are the Laplace and divergence operators of Σ with respect to the
induced metric ⟨ , ⟩, respectively; X ∈ X(Σ) is the vector field that is dual to the
1-form K(ν, ·)|Σ, and

Q = κΣ − (µ + J(ν)) − 1
2 |χ+|2.

Here κΣ represents the Gaussian curvature of Σ.
At this point, it is important to emphasize that, in the general case (i.e., when

Σ is not necessarily a MOTS), the first variation of θ+ is given by
∂θ+

∂t

∣∣∣
t=0

= −∆ϕ + 2⟨X, ∇ϕ⟩ +
(

Q − |X|2 + div X − 1
2θ+ + τθ+

)
ϕ.

The operator
Lϕ = −∆ϕ + 2⟨X, ∇ϕ⟩ + (Q − |X|2 + div X)ϕ, ϕ ∈ C∞(Σ),
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is referred to as the MOTS stability operator. It can be proved that L has a real
eigenvalue λ1, called the principal eigenvalue of L, such that Re λ ≥ λ1 for any
complex eigenvalue λ. Furthermore, the associated eigenfunction ϕ1, Lϕ1 = λ1ϕ1,
is unique up to scale and can be chosen to be everywhere positive.

The principal eigenvalue λ1(L) of the symmetrized operator L = −∆ + Q is
characterized by the Rayleigh formula:

λ1(L) = min
u∈C∞(Σ)\{0}

∫
Σ(|∇u|2 + Qu2)∫

Σ u2 .(2.3)

Furthermore, the eigenfunctions of L associated with λ1(L) are the only functions
that attain the minimum in (2.3).

It was proved by G. J. Galloway and R. Schoen (see [12, 16]) through direct
estimates, and by L. Andersson, M. Mars, and W. Simon [4] using a different
method, that λ1(L) ≤ λ1(L).

We say that Σ is stable if λ1(L) ≥ 0; this is equivalent to saying that Lϕ ≥ 0
for some positive function ϕ ∈ C∞(Σ). It is not difficult to see that, if Σ is weakly
outermost (in particular, if Σ is outermost), then Σ is stable.

Before concluding this section, let us recall the notion of 2-convexity. The tensor
K is said to be 2-convex if, at every point, the sum of its two smallest eigenvalues
is non-negative. In particular, if K is 2-convex, then trΣ K ≥ 0 along Σ. This
convexity condition has been employed by the author in related contexts [10,11,14,
21,22] (see also [20]).

3. Proofs

This section is devoted to the proofs of the main results of the paper, namely
Theorems 1.1 and 1.2. We begin by proving Theorem 1.2. The proof of Theorem 1.1
follows a similar structure.

As a first step, we establish an auxiliary infinitesimal rigidity result, which plays
a crucial role in the argument.

For convenience, we define the total charge of Σ as

QT =
√

Q2
E + Q2

M.

Proposition 3.1. Let (M3, g, K, E, B) be a three-dimensional initial data set for
the Einstein-Maxwell equations satisfying the charged dominant energy condition

µ + J(v) ≥ Λ + |E|2 + |B|2 − 2⟨E × B, v⟩
for every unit vector v ∈ TpM , every point p ∈ M , and some constant Λ ≥ 0.

Let Σ be a stable, spherical MOTS in (M, g, K). Then the area and total charge
of Σ satisfy

A ≥ 4πQ2
T.(3.1)

Moreover, if equality holds, then the following conditions are satisfied:
(1) The normal components of the electric and magnetic fields along Σ are

constant, say ⟨E, ν⟩ = a and ⟨B, ν⟩ = b.
(2) Σ is a round two-sphere with constant Gaussian curvature κΣ = a2 + b2.
(3) The constants λ1(L), λ1(L), and Λ equal zero.



AREA-CHARGE INEQUALITY AND LOCAL RIGIDITY 7

Proof. Since Σ is stable and λ1(L) ≤ λ1(L), we have the following inequality for
every u ∈ C∞(Σ):

0 ≤ λ1(L)
∫

Σ
u2 ≤

∫
Σ

(|∇u|2 + Qu2).

Taking u ≡ 1, we obtain

0 ≤ λ1(L)A ≤
∫

Σ
Q =

∫
Σ

(
κΣ − (µ + J(ν)) − 1

2 |χ+|2
)

(3.2)

≤ 4π −
∫

Σ
(µ + J(ν)),

where we have used the Gauss-Bonnet theorem.
Now observe that

µ + J(ν) ≥ Λ + |E|2 + |B|2 − 2⟨E × B, ν⟩(3.3)
≥ |E⊤|2 + |B⊤|2 − 2⟨E⊤ × B⊤, ν⟩ + ⟨E, ν⟩2 + ⟨B, ν⟩2,

where E⊤ and B⊤ are the tangent components to Σ:
E⊤ = E − ⟨E, ν⟩ν, B⊤ = B − ⟨B, ν⟩ν.

On the other hand, it is not difficult to see that
|E⊤|2 + |B⊤|2 − 2⟨E⊤ × B⊤, ν⟩ ≥ (|E⊤| − |B⊤|)2 ≥ 0.(3.4)

Using these estimates, we conclude that

0 ≤ 4π −
∫

Σ
(⟨E, ν⟩2 + ⟨B, ν⟩2).

Applying the Cauchy-Schwarz inequality, we obtain

(4πQE)2 =
(∫

Σ
⟨E, ν⟩

)2
≤ A

∫
Σ

⟨E, ν⟩2.(3.5)

Similarly,

(4πQM)2 ≤ A
∫

Σ
⟨B, ν⟩2.(3.6)

Therefore,
0 ≤ A − 4π(Q2

E + Q2
M) = A − 4πQT(Σ)2,

proving the desired inequality.
If equality in (3.1) holds, then all inequalities above must also be equalities. In

particular:
• Second equality in (3.5) implies that ⟨E, ν⟩ is constant, say ⟨E, ν⟩ = a.

Similarly, equality in (3.6) gives that ⟨B, ν⟩ = b is constant.
• Equalities in (3.3) and (3.4) imply

Λ = 0, µ + J(ν) = ⟨E, ν⟩2 + ⟨B, ν⟩2 = a2 + b2.

• Equalities in (3.2) furnish that λ1(L) = 0, χ+ = 0, and u ≡ 1 is an
eigenfunction of L associated with λ1(L). Therefore,

0 = Q = κΣ − (µ + J(ν)),
and thus

κΣ = µ + J(ν) = a2 + b2.
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Finally, since 0 ≤ λ1(L) ≤ λ1(L) = 0, we conclude that λ1(L) = 0. □

It is worth noting that Proposition 3.1 is a quasi-local statement, in the sense
that it depends only on the intrinsic and extrinsic geometric data on Σ, not on the
behavior of the initial data set in a neighborhood of the surface.

Proof of Theorem 1.2. Since Σ is weakly outermost and, in particular, stable, it
follows from the infinitesimal rigidity (Proposition 3.1) that

A ≥ 4πQ2
T.

Furthermore, if equality holds, then λ1(L) = 0 (and Λ = 0). Thus, an outer
neighborhood U ∼= [0, δ) × Σ of Σ in M is foliated by constant null mean curvature
surfaces Σt

∼= {t} × Σ (see [13, Lemma 2.3]), with Σ0 = Σ and
g = ϕ2dt2 + gt on U,

where gt is the induced metric on Σt.
On Σt, we recall that

dθ

dt
= −∆ϕ + 2⟨X, ∇ϕ⟩ +

(
Q − |X|2 + div X − 1

2θ2 + τθ
)

ϕ,

where θ = θ(t) is the null mean curvature of Σt with respect to νt = ϕ−1∂t.
Dividing both sides of last equation by ϕ and integrating over Σt, we obtain

θ′
∫

Σt

1
ϕ

− θ

∫
Σt

τ =
∫

Σt

(
div Y − |Y |2 + Q − 1

2θ2
)

≤
∫

Σt

Q(3.7)

=
∫

Σt

(
κΣt − (µ + J(νt)) − 1

2 |χ+
t |2

)
≤ 4π −

∫
Σt

(µ + J(νt)),

where Y = X − ∇ ln ϕ.
Using the proof strategy from Proposition 3.1, we have

µ + J(νt) ≥ |E|2 + |B|2 − 2⟨E × B, νt⟩ ≥ ⟨E, νt⟩2 + ⟨B, νt⟩2.(3.8)
Thus,

θ′
∫

Σt

1
ϕ

− θ

∫
Σt

τ ≤ 4π −
∫

Σt

(⟨E, νt⟩2 + ⟨B, νt⟩2)(3.9)

≤ 4π −

(∫
Σt

⟨E, νt⟩
)2

+
(∫

Σt

⟨B, νt⟩
)2

A(t)

= 4π

(
1 − 4πQT(t)2

A(t)

)
,

where A(t) and QT(t) are the area and total charge of Σt, respectively.
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Because we are assuming 4πQT(0)2 = A(0) and div E = div B = 0 (implying
QT(t) = QT(0)), we find

θ′
(

A(t)
4π

∫
Σt

1
ϕ

)
− θ

(
A(t)
4π

∫
Σt

τ

)
≤ A(t) − 4πQT(t)2(3.10)

= A(t) − A(0)

=
∫ t

0

(∫
Σs

HΣsϕ

)
ds,

where we have used the fundamental theorem of calculus along with the first
variation of area formula.

Since, by hypothesis, K is 2-convex, it follows that
HΣs ≤ trΣs

K + HΣs = θ(s).(3.11)
Therefore,

θ′(t)
(

A(t)
4π

∫
Σt

1
ϕ

)
− θ(t)

(
A(t)
4π

∫
Σt

τ

)
≤

∫ t

0
θ(s)

(∫
Σs

ϕ

)
ds.

Using Lemma 3.2 in [21], we conclude that θ(t) ≤ 0. Because Σ is weakly
outermost, this implies θ(t) = 0, forcing all inequalities above to be equalities.

Thus:
• Equalities in (3.11) give that trΣt K = HΣt = 0 along Σt. In particular,

θ−(t) = trΣt
K − HΣt = 0

for every t ∈ [0, δ).
• Equalities in (3.10) imply that all surfaces Σt have the same area as Σ:

A(t) = A(0).
• Equalities in (3.8) hold, that is,

µ + J(νt) = |E|2 + |B|2 − 2⟨E × B, νt⟩ = ⟨E, νt⟩2 + ⟨B, νt⟩2(3.12)
along Σt for every t ∈ [0, δ).

• Finally, equalities in (3.7) imply Y = X − ∇ ln ϕ = 0 and χ+
t = 0 along Σt.

Now, taking the first variation of θ−(t) = 0, with ϕ− = −ϕ instead of ϕ, we
obtain

0 = dθ−

dt
= −∆ϕ− + 2⟨X−, ∇ϕ−⟩ + (Q− − |X−|2 + div X−)ϕ−,(3.13)

where X− = (K(−νt, ·)|Σt)♯ = −X = −∇ ln ϕ, and

Q− = κΣt
− (µ − J(νt)) − 1

2 |χ−
t |2.

Thus, dividing both sides of (3.13) by ϕ− = −ϕ and integrating over Σt, we get

0 =
∫

Σt

(div Y − − |Y −|2 + Q−) ≤
∫

Σt

Q− ≤ 4π −
∫

Σt

(µ − J(νt)),(3.14)

where Y − = X− − ∇ ln ϕ = −2∇ ln ϕ. Above we have used the Gauss-Bonnet
theorem.

Observe that
µ − J(νt) ≥ |E|2 + |B|2 + 2⟨E × B, νt⟩ ≥ ⟨E, νt⟩2 + ⟨B, νt⟩2.(3.15)
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Therefore,

0 ≤ 4π −
∫

Σt

(µ − J(νt)) ≤ 4π −
∫

Σt

(⟨E, νt⟩2 + ⟨B, νt⟩2)

≤ 4π

(
1 − 4πQT(t)2

A(t)

)
= 4π

(
1 − A(0)

A(t)

)
= 0,

thus all inequalities above must be equalities.
Then:

• From (3.12) and equalities in (3.15), we have
|E|2 + |B|2 − 2⟨E × B, νt⟩ = ⟨E, νt⟩2 + ⟨B, νt⟩2

= |E|2 + |B|2 + 2⟨E × B, νt⟩.

Therefore, ⟨E × B, νt⟩ = 0 and |E|2 + |B|2 = ⟨E, νt⟩2 + ⟨B, νt⟩2. Thus, E
and B are parallel to νt, say E = aνt and B = bνt. Furthermore, from the
second equality in (3.9), we obtain that a = a(t) and b = b(t) are constant
on Σt.

• Equalities in (3.14) imply Y − = −2∇ ln ϕ = 0 and χ−
t = 0 along Σt.

Therefore, ϕ = ϕ(t) is constant on Σt for each t ∈ [0, δ). In this case, after
a change of variable if necessary, we may assume that ϕ ≡ 1. Moreover,
χ+

t = K|Σt
+ At = 0 and χ−

t = K|Σt
− At = 0 imply that K|Σt

= 0 and Σt

is totally geodesic in (M, g). This gives that
g = dt2 + g0 on U ∼= [0, δ) × Σ,

where g0 is the induced metric on Σ.
• Because div E = div B = 0, we can see that a e b are constant.
• Looking at (3.12) and equalities in (3.15) again, we get

µ + J(νt) = a2 + b2 = µ − J(νt).
Therefore,

µ = a2 + b2, J(νt) = 0.

• It follows from (3.13) that
0 = Q− = κΣt

− µ ∴ κΣt
= µ = a2 + b2.

• Given a unit vector v tangent to M , we are assuming that
µ + J(v) ≥ |E|2 + |B|2 − 2⟨E × B, v⟩ = a2 + b2 = µ.

Therefore, J(v) ≥ 0 for every v, that is, J = 0.
• Finally, K|Σt

= 0, K(νt, ·)|Σt
= X♭ = 0, and J = div(K − τg) = 0 give

that K = fdt2 on U ∼= [0, δ) × Σ, where f depends only on t ∈ [0, δ).
This concludes the proof of Theorem 1.2. □

We now proceed with the proof of Theorem 1.1. To this end, we first present
the following auxiliary result:

Proposition 3.2. Let (M3, g) be a three-dimensional Riemannian manifold whose
scalar curvature R satisfies

1
2R ≥ Λ + |E|2 + |B|2,

where Λ is a non-negative constant, and E and B are vector fields on M .
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If Σ is a stable, minimal two-sphere embedded in (M, g), then the area and total
charge of Σ satisfy

A ≥ 4πQ2
T.(3.16)

Moreover, if equality holds, then the following conditions are satisfied:
(1) The electric and magnetic fields are parallel to ν; more precisely,

E = aν, B = bν,

for some constants a and b.
(2) Σ is a round two-sphere with constant Gaussian curvature κΣ = a2 + b2.
(3) Σ is totally geodesic, Λ = 0, and R = 2(a2 + b2) on Σ.

It is worth noting that inequality (3.16) was originally derived by Gibbons [17]
(see also [9, Theorem 4.4]). Our contribution lies in establishing the infinitesimal
rigidity statement.

Proof. Since Σ is a stable minimal surface, the stability inequality says that
1
2

∫
Σ

(R + |A|2)u2 ≤
∫

Σ
|∇u|2 +

∫
Σ

κΣu2

for every u ∈ C∞(Σ). Taking u ≡ 1, we obtain
1
2

∫
Σ

R ≤ 4π,(3.17)

where we have used the Gauss-Bonnet theorem.
Next, using the estimate

1
2R ≥ Λ + |E|2 + |B|2 ≥ ⟨E, ν⟩2 + ⟨B, ν⟩2,(3.18)

we conclude that ∫
Σ

(⟨E, ν⟩2 + ⟨B, ν⟩2) ≤ 4π.

Finally, applying the Cauchy-Schwarz inequality yields

(4πQT)2 =
(∫

Σ
⟨E, ν⟩

)2
+

(∫
Σ

⟨B, ν⟩
)2

≤ A
∫

Σ
(⟨E, ν⟩2 + ⟨B, ν⟩2) ≤ 4πA,

(3.19)

which proves inequality (3.16).
Now suppose that equality holds in (3.16). Then equality must also hold in each

of the steps above.
Equality in (3.17) implies that Σ is totally geodesic and that u0 ≡ 1 is a Jacobi

function on Σ:

∆u0 + 1
2(R − 2κΣ + |A|2)u0 = 0 on Σ.

Therefore, R = 2κΣ.
Equality in (3.18) implies Λ = 0, and that E and B are parallel to ν along Σ,

i.e. E = aν and B = bν for some functions a, b.
Finally, second equality in (3.19) implies that ⟨E, ν⟩ and ⟨B, ν⟩ are constant,

hence a and b are constant functions. □
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Proof of Theorem 1.1. Since Σ is area-minimizing (in particular, stable minimal),
it follows from Proposition 3.2 that A ≥ 4πQ2

T. Furthermore, if equality holds,
then the Jacobi operator of Σ reduces to −∆.

Therefore, as in the proof of Theorem 1.2, by a classical argument in the literature
(see, e.g., [2, 5, 23, 24]), a neighborhood U ∼= (−δ, δ) × Σ of Σ in M can be foliated
by constant mean curvature surfaces Σt

∼= {t} × Σ, with Σ0 = Σ and
g = ϕ2dt2 + gt on U.

The first variation of H(t) := HΣt gives

H ′ = −∆ϕ − 1
2(R − 2κΣt

+ |At|2 + H2)ϕ.

Thus,

H ′
∫

Σt

1
ϕ

= −
∫

Σt

∆ϕ

ϕ
− 1

2

∫
Σt

(R + |At|2 + H2) +
∫

Σt

κΣt

≤ −
∫

Σt

|∇ϕ|2

ϕ2 − 1
2

∫
Σt

R + 4π

≤ −1
2

∫
Σt

R + 4π.

Using the estimates
1
2R ≥ |E|2 + |B|2 ≥ ⟨E, νt⟩2 + ⟨B, νt⟩2,

and applying the Cauchy-Schwarz inequality, we obtain

H ′
∫

Σt

1
ϕ

≤ 4π

(
1 − 4πQT(t)2

A(t)

)
.

On the other hand, 4πQT(t)2 = 4πQT(0)2 = A(0), since div E = div B = 0.
Therefore,

H ′(t)
∫

Σt

1
ϕ

≤ 4π

A(t) (A(t) − A(0)) = 4π

A(t)

∫ t

0
H(s)

(∫
Σs

ϕ

)
ds,

that is,

H ′(t)η(t) ≤
∫ t

0
H(s)ξ(s)ds, η(t) := A(t)

4π

∫
Σt

1
ϕ

, ξ(t) :=
∫

Σt

ϕ,

where we have used the fundamental theorem of calculus together with the first
variation of area formula. This holds for every t ∈ (−δ, δ).

It follows directly from Lemma 3.2 in [21] that H(t) ≤ 0 for every t ∈ [0, δ).
Similarly, by applying the same strategy as in the proof of Lemma 3.2 in [21] for
ρ(t) = 0, it is not difficult to show that H(t) ≥ 0 for every t ∈ (−δ, 0]. Therefore,

A′(t) =
∫

Σt

H(t)ϕ
{

≤ 0 for t ∈ [0, δ),
≥ 0 for t ∈ (−δ, 0].(3.20)

In any case, A(t) ≤ A(0) for every t ∈ (−δ, δ). This implies that A(t) = A(0) for all
t ∈ (−δ, δ), since Σ0 = Σ is area-minimizing. Using this in (3.20), we obtain that
H(t) = 0 for every t ∈ (−δ, δ). Therefore, all inequalities above must be equalities.

Thus, each Σt is an area-minimizing surface satisfying A(t) = 4πQT(t)2. Then,
by Proposition 3.2,
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• E = aνt and B = bνt, where a = a(t) and b = b(t) are constant on Σt;
• Each Σt is a totally geodesic round two-sphere with constant Gaussian

curvature κΣt
= a2 + b2;

• R = 2(a2 + b2) on Σt for each t ∈ (−δ, δ).
Finally, since div E = div B = 0, we conclude that a and b are constant functions.

Standard calculations guarantee Theorem 1.1. □

4. The model

Let q > 0 and consider the dyonic Bertotti-Robinson spacetime (V 4, h) defined
by

V 4 = R × R × S2, h = q2(− cosh2 r dt2 + dr2 + dθ2 + sin2 θ dϕ2).
Note that (V, h) is the direct product of a two-dimensional anti-de Sitter space

of curvature −1/q2 and a round two-sphere of curvature 1/q2. Consequently, one
can verify that

Rich = 1
q2 diag(−htt, −hrr, hθθ, hϕϕ).

In particular, the scalar curvature of (V, h) vanishes.
Now let qe and qm be constants and define the Faraday tensor F by

F = −qe cosh r dt ∧ dr + qm sin θ dθ ∧ dϕ.

A direct computation shows that the associated electromagnetic energy-momentum
tensor T EM takes the form

T EM = 1
8π

q2
e + q2

m

q4 diag(−htt, −hrr, hθθ, hϕϕ).

Therefore, by choosing qe and qm such that q2 = q2
e + q2

m, the spacetime (V, h)
satisfies the Einstein equations with zero cosmological constant:

Rich = 8πT EM.

Observe that each t-slice M = {t} × R × S2 is time-symmetric and isometric to
the Riemannian product of a line with a round two-sphere of Gaussian curvature
1/q2. Furthermore, the electric and magnetic vector fields on M are given by

E = qe

q2 ν, B = qm

q2 ν, ν := 1
q

∂r.

Finally, consider the 2-sphere Σ = {t} × {r} × S2. The electric charge enclosed
by Σ is

QE = 1
4π

∫
Σ

⟨E, ν⟩ = 1
4π

qe

q2 A = qe.

Similarly, the magnetic charge is
QM = qm.

Clearly, Σ and M satisfy all the assumptions of Theorems 1.1 and 1.2 with
A = 4πQ2

T.
For a detailed discussion of the Bertotti-Robinson spacetime with qm = 0, as

well as other notable spacetimes in dimension D ≥ 4 with vanishing magnetic field,
see [7].
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