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Abstract. In this paper, we establish new area-charge inequalities for
the boundary of time-symmetric Einstein-Maxwell initial data sets, in
both compact and noncompact cases, under the dominant energy con-
dition. These inequalities lead to novel rigidity theorems with no ana-
logues in the uncharged setting. In the noncompact case, our result is
obtained by applying Gromov’s µ-bubble technique in a new geometric
context.

1. Introduction

Inequalities relating the physical quantities of black holes – such as mass,
charge, and angular momentum – have been a central topic in mathemati-
cal relativity and geometric analysis. Numerous works have explored the
geometric and physical constraints arising from the interplay among these
quantities and the horizon area, particularly in the context of stable mini-
mal surfaces, which are especially significant due to their variational charac-
terization (see, e.g., [15, 29]). Additional contributions include studies on
isoperimetric surfaces [12], stable marginally outer trapped surfaces (MOTS)
[32], and min-max constructions leading to area-charge inequalities [10]. For
a comprehensive overview of these and other geometric inequalities, we refer
the reader to [11].

Using variational and minimal surface techniques, we establish sharp area-
charge estimates for time-symmetric charged initial data sets with boundary,
valid across compact and noncompact settings where the dominant energy
condition holds.

Consider an oriented Riemannian 3-manifold (M3, g) and a vector field
representing the electric field E ∈ X(M). The triple (M3, g, E) can be
viewed as part of a time-symmetric initial data set for the Einstein-Maxwell
equations. In this context, the charged dominant energy condition for the
non-electromagnetic matter fields implies (see Section 2):

Rg ≥ 2Λ + 2|E|2,
where Rg is the scalar curvature of (M3, g) and Λ is a constant representing
the cosmological constant. In this framework, it is natural to associate
with any closed orientable embedded surface Σ ⊂ M the notion of enclosed
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inequality.
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charge, defined by the flux integral

Q(Σ) =
1

4π

∫
Σ
⟨E,N⟩,

where N is a unit normal vector field along Σ. Assuming that divg E = 0,
it follows from the divergence theorem that the charge depends only on the
homology class of Σ.

Our first result establishes geometric inequalities for charged Riemannian
3-manifolds with boundary. Given a boundary component Σ, the theorem
relates the cosmological constant, the electric charge Q(Σ), and the bound-
ary geometry, providing constraints on the area of Σ as well as on the global
structure of M .

Theorem 1. Let (M3, g, E) be a compact orientable Riemannian 3-manifold
with boundary, equipped with a divergence-free vector field E representing the
electric field. Suppose the scalar curvature satisfies

Rg ≥ 2Λ + 2|E|2,
and assume that the boundary ∂M is weakly mean-convex.

Let Σ be a connected component of ∂M such that H2(M,Σ) = 0.

(1) If Λ > 0, then
4ΛQ(Σ)2 ≤ 1,

and

|Σ| ≥ 2π

Λ

(
1−

√
1− 4ΛQ(Σ)2

)
. (1.1)

(2) If Λ = 0, then
|Σ| ≥ 4πQ(Σ)2. (1.2)

Moreover, if equality holds in (1.1) and (1.2), then (M3, g) is isometric
to the Riemannian product ([0, ℓ] × Σ, dt2 + g0) for some ℓ > 0, where the
induced metric g0 on Σ has constant Gaussian curvature κg = a2 + Λ, and
E = aN . In either case, the genus g(Σ) of Σ equals zero, assuming the
equality holds.

The proof of Theorem 1, as well as the subsequent results, relies on a
combination of techniques from Geometric Measure Theory and topological
constraints. These tools enable the construction of area-minimizing surfaces,
that is, surfaces that minimize area within a given class of competitors.
Among minimal surfaces, area-minimizing ones play a central role in various
scalar curvature rigidity results, including those in [2, 3, 4, 7, 25, 30, 31, 35].

In general, when the charge vanishes, most existing results recover clas-
sical Riemannian conclusions. However, the results presented here have no
counterpart in the purely Riemannian setting, except for the case when
Λ < 0 and g(Σ) ≥ 2 in the next theorem, which recovers [31, Theorem 5].

We now extend our analysis to the case of a negative cosmological constant
Λ < 0. Before stating our next result, let us recall that a 3-manifold M is
irreducible if every embedded 2-sphere in M bounds an embedded 3-ball,
and a surface Σ ⊂ M , other than a 2-sphere, is incompressible if it is π1-
injective, that is, the induced map π1(Σ) → π1(M) is injective.
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Theorem 2. Let (M3, g, E) be a compact orientable Riemannian 3-manifold
with boundary, equipped with a divergence-free vector field E representing the
electric field. Suppose the scalar curvature satisfies

Rg ≥ 2Λ + 2|E|2,
for some constant Λ < 0, and that the boundary ∂M is weakly mean-convex.

Let Σ be a connected component of ∂M .

(1) If inf |E|2 > |Λ| and H2(M,Σ) = 0, then

|Σ| ≥ 2π

|Λ|

(√
1 + 4|Λ|Q(Σ)2 − 1

)
. (1.3)

(2) If Σ is incompressible, and M is irreducible and does not contain
any closed non-orientable embedded surfaces, then

|Σ| ≥ 2π

|Λ|

(
(g(Σ)− 1) +

√
(g(Σ)− 1)2 + 4|Λ|Q(Σ)2

)
, (1.4)

where g(Σ) is the genus of Σ.

Moreover, if equality holds in any of the above inequalities, then (M3, g)
is isometric to the Riemannian product ([0, ℓ]×Σ, dt2 + g0) for some ℓ > 0,
where the induced metric g0 on Σ has constant Gaussian curvature κg =
a2 + Λ, and E = aN .

It is interesting to note that Theorem 2 imposes no restriction on the
genus of Σ. This contrasts with the uncharged case when Λ < 0, which
only admits surfaces of genus at least two, and thus represents a new phe-
nomenon. Moreover, in the case g(Σ) = 1, our result can be compared
to [4, Theorem 2], which asserts that if M is a complete 3-manifold with
nonnegative scalar curvature and weakly mean-convex boundary, then the
existence of any two-sided torus Σ ⊂ M that minimizes area in its isotopy
class implies that M is flat. In contrast, our result allows the presence of a
2-torus Σ with an explicit lower bound for its area:

|Σ| ≥ 4π|Q(Σ)|√
|Λ|

.

For higher genus surfaces (g(Σ) ≥ 2), our result may also be compared to
[31, Theorem 5].

The next result extends the previous theorems to the noncompact setting.
The key tool in the proof is Gromov’s concept of a µ-bubble [18, 20], which
arises as a minimizer of a weighted area functional. More precisely, given a
Riemannian manifold (Mn, g) and a function h, a µ-bubble is defined as a
minimizer or, more generally, a critical point) of the functional

Ω 7→ Hn−1(∂Ω)−
∫
Ω
h,

where Hn−1 is the induced (n − 1)-dimensional Hausdorff measure, and
Ω ⊂ M ranges over a suitable class of subsets, such as Caccioppoli sets.

Very recently, Gromov’s µ-bubble technique has emerged as a powerful
tool in geometric analysis, with numerous applications to other geometric
problems; see, for instance, [6, 8, 9, 19, 23, 26, 33, 35, 36, 37, 38].
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Theorem 3. Let (M3, g, E) be a complete, noncompact, orientable Rie-
mannian 3-manifold with connected compact boundary ∂M , equipped with a
divergence-free vector field E representing the electric field. Assume that the
scalar curvature satisfies

Rg ≥ 2Λ + 2|E|2,
where Λ is a constant such that Λ+ |E|2 is uniformly positive, and that the
boundary ∂M is weakly mean-convex. Assume further that H2(M,∂M) = 0.
Then the following inequalities hold:

(1) If Λ ∈ R \ {0}, then
4ΛQ(∂M)2 ≤ 1

(this is trivial when Λ < 0), and

|∂M | ≥ 2π

Λ

(
1−

√
1− 4ΛQ(∂M)2

)
. (1.5)

(2) If Λ = 0, then

|∂M | ≥ 4πQ(∂M)2. (1.6)

Moreover, if equality holds in either (1.5) or (1.6), then there exists an
isometry

Φ : ([0,+∞)× ∂M, dt2 + g0) → (M3, g),

such that Φ(0, ∂M) = ∂M , where the induced metric g0 on ∂M has constant
Gaussian curvature κg = a2 + Λ, and E = aN .

The first difficulty in proving Theorem 3 is to ensure that the sequence of
approximating µ-bubbles converges to a well-defined limiting surface, rather
than diverging to infinity. This requires controlling the behavior of the µ-
bubbles to guarantee that they do not escape to infinity during the limiting
process.

Outline of the paper. In Section 2, we introduce a family of model
solutions that depends on the sign of the cosmological constant. These
models serve both as motivating examples and as concrete illustrations of the
general results established later in the paper. In Section 3, we derive sharp
area-charge estimates under suitable geometric assumptions and prove an
auxiliary local rigidity result, which plays an important role in the arguments
developed in the subsequent section. Finally, in Section 4, we present the
proofs of Theorems 1, 2, and 3.
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2. The models

We consider a time-symmetric initial data set (IDS) for the Einstein-
Maxwell equations, denoted by (M3, g, E,B), where E,B ∈ X(M) represent
the electric and magnetic fields, respectively. The constraint equations in
this setting are given by:

Rg − 2(|E|2 + |B|2)− 2Λ = 16πµ,

divg E = 4πρ,

divg B = 0,

where µ denotes the energy density of non-electromagnetic matter, and ρ is
the electric charge density. When ρ ≡ 0, we say that (M3, g, E,B) has no
charged matter.

The dominant energy condition for the non-electromagnetic matter fields
can be expressed in terms of the initial data set as:

Rg ≥ 2(|E|2 + |B|2) + 2Λ.

This terminology is justified by the well-known fact that the Cauchy develop-
ment of such an IDS yields a Lorentzian 4-manifold solving the Einstein-
Maxwell equations with the prescribed energy and charge densities.

For the sake of simplicity and clarity of exposition, we will set B = 0
throughout this paper. However, it is not difficult to show that the results
remain valid, with appropriate adaptations, in the present of magnetic fields.

We now present models that illustrate Theorems 1, 2, and 3.

Cosmological constant Λ > 0. The first example we consider comes from
the dS Bertotti-Robinson solution to the Einstein-Maxwell equations, given
by 

ds2 =
1

A
(− sinh2 χdT 2 + dχ2) +

1

B
dΩ2,

F = −Q
B

A
sinhχdT ∧ dχ,

where dΩ2 denotes the round metric on S2 of constant Gaussian curvature
one. The parameters A and B are related to the cosmological constant Λ
and electric charge Q through the identities

Λ =
B −A

2
> 0, Q2 =

A+B

2B2
.

Above, F is the Faraday tensor associated with the Bertotti-Robinson
solution. The corresponding electric vector field induced on a T -slice is
given by

E = QB
√
A∂χ = QBN,

where N =
√
A∂χ is the unit normal in the χ-direction. Taking a =

⟨E,N⟩ = QB, direct computations show that the triple ([χ0, χ1]×S2, g, E),
with

g =
1

A
dχ2 +

1

B
dΩ2,

satisfies all the assumptions of Theorem 1 with 4ΛQ2 < 1 and equality in
(1.1).
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Our second example arises from the Nariai-Bertotti-Robinson solution:ds2 = −dT 2 + dχ2 +
1

2Λ
dΩ2,

F = −
√
Λ dT ∧ dχ.

In this case, the electric vector field is given by E =
√
Λ ∂χ. Taking a =

√
Λ,

straightforward computations show that ([χ0, χ1]× S2, g, E), with

g = dχ2 +
1

2Λ
dΩ2,

satisfies all the hypotheses of Theorem 1 with equality in (1.1) and, in par-
ticular, in (1.1). The charge of each slice {χ} × S2 is given by Q = 1

2
√
Λ
.

Cosmological constant Λ = 0. Taking A = B in the previous example,
we obtain the so-called flat Bertotti-Robinson solution, which, as before,
gives rise to an initial data set satisfying all the hypotheses of Theorem 1
with Λ = 0 and equality in (1.2).

Cosmological constant Λ < 0. Our final example is a class of exact so-
lutions that includes the AdS Bertotti-Robinson and the anti-Nariai space-
times. These represent a natural generalization of the dS Bertotti-Robinson
solution to the case where the cosmological constant is negative (Λ < 0):

ds2 =
1

A
(− sinh2 χdT 2 + dχ2) +

1

B
dΩ2

k,

F = −QADM
B

A
sinhχdT ∧ dχ,

where dΩ2
k denotes a metric of constant Gaussian curvature k = 1, 0, or −1

on a closed orientable surface Σ of genus g(Σ) = 0, 1, or ≥ 2 depending on
whether k = 1, 0, or −1, respectively.

The constants A and B are related to the cosmological constant Λ and
the ADM charge QADM through the identities

Λ = −1

2
(A−Bk) < 0, Q2

ADM =
A+Bk

2B2
.

As in the previous example, the associated electric vector field on a space-
like T -slice is given by

E = QADMBN,

where N =
√
A∂χ.

Once more, letting a = QADMB, a direct computation shows that the
triple ([χ0, χ1]× Σ, g, E), where

g =
1

A
dχ2 +

1

B
dΩ2

k,

satisfies the respective hypotheses of Theorem 2, achieving equality in (1.3)
for k = 1, or in (1.4) for k = 0,−1. Note that the electric charge of each
slice {χ} × Σ is given by

Q = QADM
ωk

4π
,

where ωk is the area of (Σ, dΩ2
k).
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Finally, we point out that all the above metrics can be extended to com-
plete smooth metrics on ([χ0,+∞)×Σ, g, E), thereby providing models for
Theorem 3.

These and other special solutions to the Einstein-Maxwell equations can
be found in [5].

3. Area-charge estimates and an auxiliary local rigidity
result

The goal of this section is to prove some area-charge estimates and to
establish an auxiliary local rigidity result that will be instrumental in the
proof of the main theorems.

3.1. Area-charge estimates. We begin by deriving area-charge estimates
that relate the sign of the cosmological constant to the topology and the
electric charge of a weakly outermost or area-minimizing surface.

Proposition 4. Let (M3, g) be a Riemannian 3-manifold with boundary,
equipped with a divergence-free vector field E representing the electric field.
Suppose the scalar curvature of (M3, g) satisfies

Rg ≥ 2Λ + 2|E|2,
for some constant Λ.

Assume further that a closed connected component Σ of ∂M is weakly
mean-convex and either weakly outermost or area-minimizing. Then Σ is
minimal, and one of the following cases holds:

a) Case Λ > 0. The surface Σ is topologically a 2-sphere (g(Σ) = 0),
and its charge satisfies 4ΛQ(Σ)2 ≤ 1. In this case, the area of Σ
obeys

2π

Λ

(
1−

√
1− 4ΛQ(Σ)2

)
≤ |Σ| ≤ 2π

Λ

(
1 +

√
1− 4ΛQ(Σ)2

)
. (3.1)

b) Case Λ = 0. We have g(Σ) = 0 or g(Σ) = 1.
– If g(Σ) = 0, then

|Σ| ≥ 4πQ(Σ)2. (3.2)

– If g(Σ) = 1, then necessarily Q(Σ) = 0.
c) Case Λ < 0. There is no restriction on the genus of Σ (g(Σ) ≥ 0),

and its area satisfies

|Σ| ≥ 2π

|Λ|

(
(g(Σ)− 1) +

√
(g(Σ)− 1)2 + 4|Λ|Q(Σ)2

)
. (3.3)

Here, Q(Σ) denotes the electric charge enclosed by Σ, and g(Σ) represents
the genus of Σ.

Proof. Let N be the inward-pointing unit normal vector to Σ, and let H =
divΣN denote the mean curvature of Σ with respect to N . The boundary
component Σ being weakly mean-convex means that its mean curvature

vector H⃗ = −HN points into the manifold M , which is equivalent to H ≤ 0.
We claim that Σ is minimal. Otherwise, by evolving Σ via mean curvature

flow, we obtain a surface Σ′, close to Σ, whose mean curvature and area
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satisfy H < 0 and |Σ′| < |Σ|. This contradicts the assumption that Σ is
either weakly outermost or area-minimizing.

This shows that Σ is minimal and either weakly outermost or area-
minimizing; in particular, Σ is a stable minimal surface. Therefore, for
any u ∈ C∞(Σ), we have

1

2

∫
Σ
(Rg + |A|2)u2 ≤

∫
Σ
|∇u|2 +

∫
Σ
κgu

2,

where A denotes the second fundamental form of Σ, and κg is the Gaussian
curvature of Σ.

Taking u ≡ 1, using the inequality Rg ≥ 2Λ+2|E|2 and the Gauss-Bonnet
theorem, we obtain

Λ|Σ|+
∫
Σ
|E|2 ≤

∫
Σ
κg = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ. On the other hand, by the
Cauchy-Schwarz inequality,

16π2Q(Σ)2 =

(∫
Σ
⟨E,N⟩

)2

≤ |Σ|
∫
Σ
|E|2.

Therefore,

Λ|Σ|+ 16π2Q(Σ)2

|Σ|
≤ 2πχ(Σ). (3.4)

It is straightforward to verify that inequality (3.4) leads to the area bounds
stated in the proposition, depending on the sign of the cosmological constant
Λ and the topology of Σ via the Euler characteristic (see, e.g., the proof of
[14, Proposition 3.1]). We remark that, in the case Λ > 0, the proof of the
inequality 4ΛQ(Σ)2 ≤ 1 can also be found in [14]. □

3.2. Auxiliary local rigidity result. In this subsection, we establish the
local rigidity result that follows from Proposition 4.

We begin by noting an infinitesimal rigidity statement: if equality holds
in (3.1), (3.2), or (3.3), then all inequalities in the proof of Proposition 4
must, in fact, be equalities. This observation leads to the following:

Proposition 5. If Σ attains the equality in (3.1), (3.2), and (3.3), then
the electric field satisfies E = aN along Σ for some constant a, Σ is totally
geodesic, Rg = 2a2 + 2Λ on Σ, and the function u0 ≡ 1 is a Jacobi function
on Σ, that is,

∆u0 +
1

2
(Rg − 2κg + |A|2)u0 = 0.

In particular, Σ has constant Gaussian curvature equal to a2+Λ with respect
to the induced metric.

We now establish the following local rigidity result, which will be essen-
tial in the proof of our main theorems. The arguments follow the same
geometric construction employed in [14], [24], and [29] for analogous rigidity
statements. We prove it here for the sake of completeness and convenience
of the reader.
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Proposition 6. If Σ attains the equality in (3.1), (3.2), or (3.3), then there
exists a neighborhood U ∼= [0, δ)× Σ of Σ in M such that:

(1) The electric field is normal to the foliation; more precisely, E = aNt

for some constant a, where Nt is the unit normal to Σt
∼= {t} × Σ

along the foliation.
(2) (U, g|U ) is isometric to ([0, δ)×Σ, dt2+g0) for some δ > 0, where the

induced metric g0 on Σ has constant Gaussian curvature κg = a2+Λ.

Proof. If equality holds in (3.1), (3.2), or (3.3), then (in view of Propo-
sition 5) standard arguments (see, e.g., [1, 3, 30, 31]) imply that a collar
neighborhood U ∼= [0, δ) × Σ of Σ in M can be foliated by constant mean
curvature surfaces Σt

∼= {t} × Σ, with Σ0 = Σ and

g = ϕ2 dt2 + gt on U,

where gt is the induced metric on Σt. Let H(t) = divΣt Nt denote the mean
curvature of Σt with respect to the unit normal vector Nt = ϕ−1∂t.

Recall the following well-known evolution equation for H(t) under normal
deformations of surfaces (see, for instance, [22]):

H ′(t) = −∆Σtϕ− 1

2
(Rg − 2κΣt + |AΣt |2 +H(t)2)ϕ.

Dividing both sides by ϕ and integrating over Σt, we obtain

H ′(t)

∫
Σt

1

ϕ
≤ −

∫
Σt

|∇Σtϕ|2

ϕ2
− 1

2

∫
Σt

(Rg + |AΣt |2 +H(t)2) +

∫
Σt

κΣt

≤ −
∫
Σt

(|E|2 + Λ) + 4π(1− g(Σ)),

where we used the divergence theorem and the Gauss-Bonnet theorem, along
with the inequality Rg ≥ 2|E|2 + 2Λ.

On the other hand, the Cauchy-Schwarz inequality implies

H ′(t)

∫
Σt

1

ϕ
≤ −16π2Q(t)2

|Σt|
− Λ|Σt|+ 4π(1− g(Σ)),

where Q(t) denotes the charge of Σt. Observe that, since divg E = 0, the
divergence theorem yields

Q(t) = Q(0) = Q(Σ), ∀t ∈ [0, δ).

Therefore, under the assumption that equality holds in (3.4), we obtain

H ′(t)

∫
Σt

1

ϕ
≤ C

(
1

|Σ|
− 1

|Σt|

)
+ Λ(|Σ| − |Σt|),

where C = 16π2Q(Σ)2.
According to our assumptions, we have |Σ| ≤ |Σt| for every t ∈ [0, δ).

This is immediate when Σ is area-minimizing. On the other hand, if Σ is
weakly outermost, we compute

|Σ| − |Σt| = −
∫ t

0
H(s)

(∫
Σs

ϕ

)
ds ≤ 0,
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since H(t) ≥ 0. Here, we applied the fundamental theorem of calculus
together with the first variation of area formula. Therefore, if Λ ≥ 0, we
obtain

H ′(t)

∫
Σt

1

ϕ
≤ C

(
1

|Σ|
− 1

|Σt|

)
= C

∫ t

0

H(s)

|Σs|2

(∫
Σs

ϕ

)
ds.

When Λ < 0, we instead write

H ′(t)

∫
Σt

1

ϕ
≤ C

(
1

|Σ|
− 1

|Σt|

)
+ Λ(|Σ| − |Σt|)

=

∫ t

0

(
C

|Σs|2
− Λ

)
H(s)

(∫
Σs

ϕ

)
ds.

In either case, we conclude that

H ′(t)

∫
Σt

1

ϕ
≤

∫ t

0
H(s)ξ(s)ds, ∀t ∈ [0, δ),

for some function ξ(t) ≥ 0. Thus, by Lemma 3.2 in [28], it follows that
H(t) ≤ 0 for all t ∈ [0, δ). If Σ is weakly outermost, this guarantees that
H(t) = 0 for all t, and all of the inequalities above must be equalities.

If Σ is area-minimizing, we similarly find

0 ≥ |Σ| − |Σt| = −
∫ t

0
H(s)

(∫
Σs

ϕ

)
ds ≥ 0,

so again H(t) = 0 for all t, and all inequalities become equalities.
Standard computations as in [29] then yield the desired result. □

4. Proof of the main results

This section is entirely devoted to the proof of Theorems 1, 2, and 3.

4.1. Compact cases: Theorems 1 and 2.

Proof of Theorem 1. We divide the proof into two cases:

Case Λ > 0. We first show that 4ΛQ(Σ)2 ≤ 1.
Assume, by contradiction, that 4ΛQ(Σ)2 > 1. Since [Σ] ̸= 0 in H2(M ;Z)

(as, otherwise, we would have Σ = ∂M and, in particular, Q(Σ) = 0), we
may apply existence results from Geometric Measure Theory [13] for area-
minimizing surfaces in integral homology classes. This yields a smooth,
embedded, closed, oriented, area-minimizing surface Σ′ that is homologous
to Σ. Furthermore, since H2(M,Σ) = 0 and Σ is connected, Σ′ must itself
be connected.

If Σ′ ∩ ∂M ̸= ∅, then by the weak mean-convexity of ∂M , the surface
Σ′ must coincide with a connected component of ∂M . Proposition 4 then
implies that Σ′ is minimal and satisfies

4ΛQ(Σ)2 > 1 ≥ 4ΛQ(Σ′)2.

However, since Σ and Σ′ are homologous, they enclose the same total charge;
that is, Q(Σ) = Q(Σ′). This yields a contradiction.
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If instead Σ′ ∩ ∂M = ∅, then Σ′ is an area-minimizing minimal surface
entirely contained in the interior of M . In this case, the same inequality
holds:

4ΛQ(Σ)2 > 1 ≥ 4ΛQ(Σ′)2,

again leading to a contradiction.
Thus, in either case, we conclude that 4ΛQ(Σ)2 ≤ 1.
Next, assume

|Σ| ≤ 2π

Λ

(
1−

√
1− 4ΛQ(Σ)2

)
.

As above, this inequality implies that [Σ] ̸= 0 in H2(M ;Z). Again, let
Σ′ be a connected area-minimizing surface in the homology class of Σ. As
before, whether or not Σ′ intersects ∂M , it is an area-minimizing minimal
surface and, by Proposition 4,

2π

Λ

(
1−

√
1− 4ΛQ(Σ)2

)
≥ |Σ| ≥ |Σ′| ≥ 2π

Λ

(
1−

√
1− 4ΛQ(Σ)2

)
,

from which it follows that

|Σ| = |Σ′| = 2π

Λ

(
1−

√
1− 4ΛQ(Σ)2

)
.

In particular, Σ is also area-minimizing. We used here that Q(Σ) = Q(Σ′).
Since Σ is area-minimizing and its area attains the first equality in (3.1),

we may apply Proposition 4 to see that g(Σ) = 0 and Proposition 6 to obtain
a collar neighborhood U ∼= [0, δ)×Σ of Σ in M satisfying the conclusion of
the theorem.

Let Σt
∼= {t} × Σ. As t ↗ δ, by standard compactness results for stable

minimal surfaces with uniformly bounded area, the surfaces Σt converge
(subsequentially) to a closed, embedded, area-minimizing surface Σδ. Since
(M3, g) has positive scalar curvature, it follows that Σδ is diffeomorphic to
either S2 or RP2. In the latter case, M3 is diffeomorphic to RP3 \ ball,
which contradicts the fact that M3 has more than one boundary component
(as, otherwise, we would have Q(Σ) = 0).

Let S := ∂M \ Σ ̸= ∅. If Σδ ∩ S ̸= ∅, then the maximum principle
implies Σδ = S, establishing the result. Otherwise, if Σδ ∩ S = ∅, we
may replace Σ by Σδ and reapply Proposition 6. This replacement is valid
because |Σδ| = |Σ| and Q(Σδ) = Q(Σ). Let T > 0 the maximal time in
which this flow exists and is smooth. The conclusion then follows by a
continuity argument, extending the local splitting to the entire manifold M .

Case Λ = 0. Assume that

|Σ| ≤ 4πQ(Σ)2.

Let Σ′ be as before. It follows from Proposition 4 that

4πQ(Σ)2 ≥ |Σ| ≥ |Σ′| ≥ 4πQ(Σ)2,

and hence |Σ| = |Σ′| = 4πQ(Σ)2. In particular, Σ is area-minimizing and
attains the lower bound in (3.2). Thus, as in the case Λ > 0, we may apply
Proposition 4 to classify the topology of Σ and Proposition 6 to obtain the
desired local splitting. The global extension then follows from the same
continuity argument. □
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A fundamental tool in the proof of our next theorem is the classical result
of Meeks-Simon-Yau [27], which asserts the existence of an area-minimizing
surface in the isotopy class of a connected, incompressible surface Σ ⊂ M ,
assuming that M is an irreducible , closed Riemannian 3-manifold. This
result remains valid when ∂M ̸= ∅, provided that the mean curvature of ∂M
with respect to the outward-pointing normal vector is nonnegative, that is,
∂M is weakly mean-convex (see Section 6 of [27]). We also point out that
Hass and Scott [21] gave an alternative proof of this result without resorting
to Geometric Measure Theory (cf. Theorem 5.1 in [21]).

We are now ready to prove the second main theorem.

Proof of Theorem 2. We divide the proof into two cases:

Case 1: inf |E|2 > |Λ| and H2(M,Σ) = 0.
Assume that

|Σ| ≤ 2π

|Λ|

(√
1 + 4|Λ|Q(Σ)2 − 1

)
.

As in the proof of Theorem 1, let Σ′ ⊂ M be a closed, connected area-
minimizing minimal surface in the homology class of Σ. Note that Σ′ is
topologically a 2-sphere, since Rg ≥ 2Λ + 2|E|2 > 0.

It follows from Proposition 4 that

2π

|Λ|

(√
1 + 4|Λ|Q(Σ)2 − 1

)
≥ |Σ| ≥ |Σ′| ≥ 2π

|Λ|

(√
1 + 4|Λ|Q(Σ)2 − 1

)
,

that is,

|Σ| = |Σ′| = 2π

|Λ|

(√
1 + 4|Λ|Q(Σ)2 − 1

)
.

The argument then proceeds similarly to the proof of Theorem 1.

Case 2: Σ is incompressible, and M is irreducible and does not
contain any closed non-orientable embedded surfaces.

Denote by J (Σ) the isotopy class of Σ in M . Under our assumptions, we
can apply the version of Theorem 5.1 in [21] (see also [27]) for 3-manifolds
with nonempty boundary to obtain a closed embedded surface Σ′ ∈ J (Σ)
such that

|Σ′| = inf
Σ̂∈J (Σ)

|Σ̂|.

Moreover, since Σ and Σ′ are diffeomorphic and homologous, we have

g(Σ′) = g(Σ) and Q(Σ′) = Q(Σ). (4.1)

On the other hand, since the boundary ∂M is weakly mean-convex, the
maximum principle implies that either Σ′ is contained in the interior of M
or it coincides with one of the connected components of ∂M . In any case,
it follows from Proposition 4 that

|Σ′| ≥ 2π

|Λ|

(
(g(Σ′)− 1) +

√
(g(Σ′)− 1)2 + 4|Λ|Q(Σ′)2

)
.
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Using (4.1) together with the fact that Σ′ is area-minimizing, we conclude
that

|Σ| ≥ 2π

|Λ|

(
(g(Σ)− 1) +

√
(g(Σ)− 1)2 + 4|Λ|Q(Σ)2

)
.

Furthermore, if equality holds, then

|Σ| = |Σ′| = 2π

|Λ|

(
(g(Σ)− 1) +

√
(g(Σ)− 1)2 + 4|Λ|Q(Σ)2

)
.

The desired conclusion then follows similarly to the rigidity statement in
Theorem 1 (see also the proof of Theorem 5 in [31]). □

4.2. Noncompact case: Theorem 3. Before proving the next result, we
recall some facts about µ-bubbles in our setting.

Let (M3, g) be a complete, noncompact, orientable Riemannian 3-manifold
with connected compact boundary ∂M . By an argument similar to the proof
of Lemma 2.1 in [36] (see also the proof of Proposition 1.3 in [37]), there
exists a proper, surjective, smooth function ϕ : M → [0,+∞) satisfying

∂M = ϕ−1(0) and Lipϕ < 1.

Given a smooth function h : [0, T ) → R, we define the functional

µh(Ω) = H2(∂∗Ω)−
∫
M\Ω

h ◦ ϕ dH3

on the class of Caccioppoli sets Ω ⊂ M with reduced boundary ∂∗Ω, subject
to the condition

M \ Ω ⋐ ϕ−1([0, T )).

For a reference on Caccioppoli sets, see [16].
Let Ω(t) be a smooth one-parameter family of regions with Ω(0) = Ω and

normal speed φ at t = 0. The first variation of µh is given by

d

dt

∣∣∣∣
t=0

µh(Ω(t)) =

∫
∂Ω

(H − h ◦ ϕ)φ,

where H is the mean curvature of ∂Ω with respect to the outward-pointing
unit normal vector field N along ∂Ω.

Since φ is arbitrary, if Ω is critical for µh, we conclude that H = h ◦ ϕ
along ∂Ω. In this case, we say that Ω is a µ-bubble, and ∂Ω is a surface with
prescribed mean curvature h ◦ ϕ|∂Ω.

Given a µ-bubble Ω(0) = Ω, the second variation formula for µh is given
by

d2

dt2

∣∣∣∣
t=0

µh(Ω(t)) =

∫
∂Ω

|∇φ|2−(Ricg(N,N)+ |A|2+⟨∇(h◦ϕ), N⟩)φ2, (4.2)

where Ricg is the Ricci tensor of (M3, g), and A is the second fundamental
form of ∂Ω ⊂ (M3, g).

We say that a µ-bubble Ω is stable if the second variation of µh is non-
negative for all normal variations Ω(t) of Ω, i.e., if the right-hand side of
(4.2) is nonnegative for all smooth functions φ.
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Recall that a band is a connected compact manifold M̂ together with a
decomposition of its boundary:

∂M̂ = ∂− ∪̇ ∂+,

where ∂− and ∂+ are nonempty unions of connected components of ∂M̂ .

Definition 7. Let (M̂, ĝ, ∂−, ∂+) be a Riemannian band. A smooth function

b : int(M̂) → R is said to satisfy the barrier condition if, for each connected
component S ⊂ ∂+ (resp., S ⊂ ∂−), either:

• b smoothly extends to S and satisfies HS ≥ b|S (resp., HS ≥ −b|S),
where HS is the mean curvature of S with respect to the outward
normal; or

• b → −∞ (resp., b → +∞) towards S.

The existence and regularity of a minimizer for µh among Caccioppoli sets,
assuming the barrier condition (and in fact for a more general functional),
were initially claimed by Gromov (see Section 5.1 of [20]). A rigorous proof
and detailed exposition were later provided by Zhu [35, Proposition 2.1] and
by Chodosh and Li [9, Proposition 12].

Proof of Theorem 3. Let ϕ : M → [0,+∞) be as above.
According to [36, Lemma 2.3] (see also the proof of Proposition 1.3 in [37]),

for any ε ∈ (0, 1), we can construct a smooth function hε : [0,
1
3ε) → (−∞, 0]

such that:

• hε satisfies

3

2
h2ε + 2h′ε = 6ε2 on

[
1
6 ,

1
3ε

)
and ∣∣∣∣32h2ε + 2h′ε

∣∣∣∣ ≤ Cε,

where C > 0 is a universal constant;
• hε(0) = 0, h′ε < 0, and

lim
t→ 1

3ε

hε(t) = −∞;

• as ε → 0, hε converges smoothly to the zero function on any closed
interval contained in [0, 1

3ε).

Let ε ∈ (0, 1) be such that 1
3ε is a regular value of ϕ, and define the

following prescribed-mean-curvature functional:

µε(Ω) = H2(∂∗Ω)−
∫
M\Ω

hε ◦ ϕ dH3

on the class Cε of Caccioppoli sets in M , with reduced boundary ∂∗Ω, such
that

M \ Ω ⋐ ϕ−1
([
0, 1

3ε

])
.

For each ε, define the Riemannian band

Mε = ϕ−1
([
0, 1

3ε

])
,
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with boundary decomposition

∂− = ϕ−1(0) = ∂M, ∂+ = ϕ−1
(

1
3ε

)
.

Note that each hε ◦ϕ, restricted to int(Mε), satisfies the barrier condition
(since ∂M is weakly mean-convex). Combined with Sard’s theorem, this
implies that for each ε ∈ (0, 1), there exists a smooth minimizer Ωε ∈ Cε for
the functional µε; see [35, Proposition 2.1] and [9, Proposition 12].

By taking a sequence of positive numbers εk → 0 as k → ∞, we thus
obtain a corresponding sequence of smooth minimizers Ωk in Cεk for the
functionals µk := µεk .

Since each boundary ∂Ωk is homologous to the surface ∂M , we may select
the homologically nontrivial components of ∂Ωk, whose union we denote by
Σk. On the other hand, because ∂M is connected, Σk is homologous to ∂M ,
and H2(M,∂M) = 0, we obtain that Σk is also connected. Then, it follows
from the second variation formula and the Gauss equation that,∫

Σk

|∇φ|2 ≥
∫
Σk

(Ricg(Nk, Nk) + |Ak|2 + ⟨∇(hεk ◦ ϕ), Nk⟩)φ2

=
1

2

∫
Σk

(Rg −RΣk
+ |Ak|2 +H2

k + 2⟨∇(hεk ◦ ϕ), Nk⟩)φ2

≥ 1

2

∫
Σk

(∣∣∣Ak −
Hk

2
gk

∣∣∣2 −RΣk

)
φ2

+
1

2

∫
Σk

(
Rg +

(3
2
h2εk + 2h′εk

)
◦ ϕ

)
φ2,

for each φ ∈ C∞(Σk), where Nk is the outward unit normal to Σk, Ak is
the second fundamental form of Σk, Hk is the mean curvature of Σk with
respect to Nk, and RΣk

is the scalar curvature of Σk with respect to the
induced metric gk. Above we used that

⟨∇(hεk ◦ ϕ), Nk⟩ ≥ −|h′εk ◦ ϕ| = h′εk ◦ ϕ,
since h′εk < 0 and Lipϕ < 1.

By taking the test function φ ≡ 1, the fact that Rg ≥ 2Λ+2|E|2, and the
Gauss-Bonnet theorem imply that

2πχ(Σk) ≥ 1

2

∫
Σk

(Rg − Cεk)

≥
∫
Σk

(Λ + |E|2)− 1

2
Cεk|Σk|.

Since we are assuming the function Λ + |E|2 is uniformly positive, say
Λ + |E|2 ≥ δ > 0, we have

2πχ(Σk) ≥
(
δ − 1

2
Cεk

)
|Σk|.
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Therefore, χ(Σk) > 0, that is, Σk is topologically a 2-sphere for k sufficiently
large. In this case,

4π ≥
∫
Σk

(Λ + |E|2)− 1

2
Cεk|Σk|

≥ Λ|Σk|+
16π2Q(Σk)

2

|Σk|
− 1

2
Cεk|Σk|.

Then we obtain

4π|Σk| ≥
(
Λ− 1

2
Cεk

)
|Σk|2 + 16π2Q(Σk)

2.

We now analyze two cases based on the cosmological constant Λ:

Case Λ ∈ R\{0}. Taking k sufficiently large so that Λ− 1
2Cεk > 0 if Λ > 0,

we have

4
(
Λ− 1

2
Cεk

)
Q(Σk)

2 ≤ 1

and

|Σk| ≥
2π(

Λ− 1
2Cεk

)(1−√
1− 4

(
Λ− 1

2Cεk
)
Q(Σk)2

)
.

Case Λ = 0. In this case,

|Σk| ≥ 4πQ(Σk)
2 − 1

8π
Cεk|Σk|2.

In either case, observe that

|Σk| ≤ |∂Ωk| ≤ µk(Ωk) ≤ µk(M) = |∂M |.

Here we used that hεk ≤ 0 and that Ωk minimizes µk. Therefore, by taking
the limit as k → +∞, and using the fact that Q(Σk) = Q(∂M) for each k,
we obtain inequalities (1.5) and (1.6).

Assume the equality holds in (1.5) (resp., (1.6)). We claim that Σk must
have nonempty intersection with the compact subset K = ϕ−1([0, 16 ]). In

fact, if K ∩ Σk = ∅, then Σk ⊂ ϕ−1((16 ,
1

3εk
)), and repeating the earlier

argument would yield

4π|Σk| > Λ|Σk|2 + 16π2Q(Σk)
2,

since
3

2
h2εk + 2h′εk = 6ε2k on

[
1
6 ,

1
3εk

)
,

which leads to a contradiction provided (1.5) (resp., (1.6)) would be strict.
Now, since the surfaces Σk are hεk -minimizing boundaries with uniformly

bounded area, we can invoke the curvature estimates in [34, Theorem 3.6].
Thus, after passing to a subsequence if necessary, Σk converges smoothly,
in a locally graphical sense with multiplicity one, to an area-minimizing
minimal boundary Σ.

Note that Σ may be either compact or noncompact. To rule out the
noncompact case, we proceed as follows. Let RΣ and AΣ denote the scalar
curvature and second fundamental form of Σ, respectively. Since Λ + |E|2
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is uniformly positive, and the stability of Σ implies the nonnegativity of the
operator

−∆Σ +
1

2
RΣ − 1

2
(|AΣ|2 + Λ+ |E|2),

it follows that Σ must consist of spherical components (see [36, Lemma 4.1]
or [17, Theorem 8.8]). Moreover, since each Σk is connected, the limit Σ
must be a 2-sphere, and for sufficiently large k, each Σk becomes a graph
over Σ. In particular, Σ is homologous to Σk.

Using the inequality |∂M | ≥ |Σ| together with the stability inequality for
minimal surfaces, we deduce that, in the case Λ ∈ R \ {0}, the following
chain of inequalities holds:

2π

Λ

(
1−

√
1− 4ΛQ(∂M)2

)
= |∂M | ≥ |Σ| ≥ 2π

Λ

(
1−

√
1− 4ΛQ(∂M)2

)
,

from which it follows that

|∂M | = |Σ| = 2π

Λ

(
1−

√
1− 4ΛQ(∂M)2

)
.

Above we used that Q(Σ) = Q(Σk) = Q(∂M).
This shows that ∂M is an area-minimizing surface that saturates either

the first inequality in (3.1) or the inequality (3.3), depending on the sign of Λ
(the analysis in the case Λ = 0 is analogous). Therefore, by Proposition 6,
there exists a collar neighborhood U ∼= [0, ρ) × ∂M of ∂M in M satisfying
the conclusions of the theorem. The result then follows by a continuity
argument. □

References

1. Lars Andersson, Mingliang Cai, and Gregory J. Galloway, Rigidity and positivity of
mass for asymptotically hyperbolic manifolds, Ann. Henri Poincaré 9 (2008), no. 1,
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