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Abstract. In this paper, we investigate the spectral properties of the
Jacobi operator for immersed surfaces with nonpositive Euler character-
istic, extending previous results in the field. We first prove a sharp upper
bound for the second eigenvalue of the Jacobi operator for compact sur-
faces with nonpositive Euler characteristic that are fully immersed in the
Euclidean sphere, and then we classify all such surfaces attaining this
upper bound. Furthermore, we demonstrate that totally geodesic tori
maximize the second eigenvalue among all compact orientable surfaces
with positive genus in the product space S1(r)× S2(s).

1. Introduction

The study of eigenvalues of differential operators on submanifolds has
profound implications in both geometry and physics. In particular, the
Jacobi operator, which represents the linearization of the mean curvature,
plays a central role in understanding the stability of minimal submanifolds.

For submanifolds Σ immersed in Euclidean space, the Jacobi operator is
expressed as

L = −∆− |σ|2,
where ∆ is the Laplace operator, and |σ|2 is the squared norm of the second
fundamental form of Σ.

In this setting, Harrell and Loss [8] demonstrated that if Σn is a compact
orientable hypersurface in Rn+1, then the second eigenvalue λ2(L) of L is
nonpositive, with equality (λ2(L) = 0) occurring if and only if Σ is a round
sphere. This result resolved a conjecture previously posed by Alikakos and
Fusco [1].

El Soufi and Ilias, in their seminal work [7], extended the results of Harrell
and Loss by providing sharp upper bounds for the second eigenvalue of the
Schrödinger operator S = −∆ + q, for compact submanifolds in simply
connected space forms, in terms of the total mean curvature of Σ and the
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mean value of the potential q. Their results further demonstrated that for
compact submanifolds in these spaces, the second eigenvalue of the Jacobi
operator is nonpositive, achieving zero if and only if the submanifold is a
geodesic sphere (see [7, Corollary 2.1]).

Building on these foundational results, the third-named author [21] fur-
ther explored the spectral properties of the Jacobi operator for immersed
hypersurfaces, providing new geometric insights into eigenvalue bounds.
Specifically, he characterized certain closed immersed hypersurfaces through
the second eigenvalue of the Jacobi operator, extending the work of El Soufi
and Ilias to more general contexts, including warped product manifolds.
Additionally, he showed that the Clifford tori in S3 maximize the second
eigenvalue of the Jacobi operator among all compact orientable surfaces
with positive genus.

In this paper, we extend previous results by characterizing surfaces im-
mersed in higher-dimensional spheres through the second eigenvalue of the
Jacobi operator. More precisely, our first theorem is as follows:

Theorem A. Let Σ be a closed surface with nonpositive Euler characteris-
tic, fully immersed in Sn. Then, the second eigenvalue of the Jacobi operator
of Σ in Sn,

L = −∆− |σ|2 − 2,

satisfies

λ2(L) ≤ −2.

Furthermore, if λ2(L) = −2, then Σ is orientable and one of the following
holds:

(1) n = 3 and Σ is congruent to the Clifford torus;
(2) n = 5 and Σ is congruent to the equilateral torus.

In fact, we obtain a more general result that estimates λ2(L)|Σ| in terms
of the Willmore energy (see Theorem 3.3).

Additionally, we characterize totally geodesic tori using the second eigen-
value of the Jacobi operator in the product space S1(r)× S2(s). More pre-
cisely:

Theorem B. Let Σ be a closed, orientable surface of positive genus im-
mersed in M = S1(r)× S2(s). If r ≥ s, then the second eigenvalue λ2(L) of
the Jacobi operator of Σ in M ,

L = −∆− (|σ|2 +RicM (N,N)),

satisfies

λ2(L) ≤ 0.

Furthermore, if λ2(L) = 0, then r = s, and Σ is congruent to the totally
geodesic torus S1(r)× S1(r) in S1(r)× S2(r).

Remark 1. In [26], Urbano proved that the totally geodesic embedding
S1(r)×S1(r) ⊂ S1(r)×S2(r) is the only compact orientable minimal surface
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immersed in S1(r)×S2(r) with index one. It is worth to note that Theorem
B provides an alternative proof of that result. In fact, let Σ be an orientable
compact minimal surface immersed in S1(r) × S2(r) with index one. First
observe that Σ has positive genus because, if not, Σ should be equal to a
slice {p}×S2(r), for some p ∈ S1(r) (see [19]), which are known to be stable.
Thus, on one hand, by Theorem B, we have λ2(L) ≤ 0 and, on the other
hand, λ2(L) ≥ 0 since Σ has index one. Thus, λ2(L) = 0 and the conclusion
follows from the rigidity part in Theorem B.

Outline of the paper. In Section 2, we develop some preliminaries
results on the conformal area of closed surfaces in higher-dimensional spheres
and discuss properties of the extrinsic geometry of S1(r)×Sn(

√
1− r2) in the

sphere. In Section 3, we prove a result that implies Theorem A, using test
functions obtained from conformal maps. In Section 4, we present the proof
of Theorem B. Finally, in Section 5, we conclude by presenting examples
that demonstrate the necessity of the hypotheses in Theorem B.

2. Preliminaries

2.1. Area estimates for surfaces in the unit sphere. In this section,
we establish an important estimate for the area of conformally transformed
surfaces in the unit sphere Sn (see [22]). These estimates will be crucial in the
proof of Theorem A, particularly in the analysis of the second eigenvalue of
the Jacobi operator. To this end, we first recall some properties of conformal
transformations in Sn.

Let Sn be the unit sphere, and let Bn+1 denote the open unit ball in the
(n + 1)-dimensional Euclidean space Rn+1, with n ≥ 3. For any y ∈ Bn+1,
define the conformal map Fy : Sn → Sn by

Fy(x) =
1− |y|2

|x+ y|2
(x+ y) + y.

A direct computation shows that

F ∗
y ds

2 = ρ2y ds
2,

where ρy : Sn → R is the positive function given by

ρy(x) =
1− |y|2

|x+ y|2
.

Thus, Fy is a conformal diffeomorphism of Sn for every y ∈ Bn+1, with
F0 = id.

Now, let Σ ⊂ Sn be a closed, connected surface immersed in Sn. The area
of its conformal image Σy = Fy(Σ) ⊂ Sn is given by

|Σy| =
ˆ
Σ

(
1− |y|2

|x(p) + y|2

)2

dv(p),(2.1)
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where x : Σ → Sn ⊂ Rn+1 is the position map, x(p) = p, and dv is the
volume element (or the Riemannian density, see [17, Appendix B] for more
details) of Σ with respect to the metric induced from Sn.

To obtain an upper bound for |Σy|, we introduce a key auxiliary function.
Fix z ∈ Bn+1 and define f : Σ → R by f = 1 + ⟨x, z⟩. It is well known that

∆x+ 2x = 2H⃗,

where ∆ is the Laplace operator on Σ and H⃗ is the mean curvature vector
of Σ in Sn. Consequently,

∆f = −2⟨x, z⟩+ 2⟨H⃗, z⟩,
which implies

∆ ln f =
∆f

f
− |∇f |2

f2
= −1 +

1− |z|2

f2
+

|zN |2

f2
+

2⟨H⃗, z⟩
f

,(2.2)

where zN is the component of z normal to Σ and tangent to Sn.
With these preliminaries, we now establish the following key estimate

relating |Σy| to the Willmore energy of Σ.

Lemma 2.1. Let Σ be an immersed surface in Sn. Then, for every y ∈
Bn+1, we have

|Σy| ≤ W(Σ),

where the Willmore energy of Σ is given by

(2.3) W(Σ) =

ˆ
Σ

(
1 + |H⃗|2

)
dv.

Moreover, if equality holds for some y, then H⃗ = −yN

f . In particular, if Σ

is minimal and equality holds, then Σ is isometric to the round sphere S2 or
y = 0.

Proof. Given y ∈ Bn+1, define z = 2(1 + |y|2)−1y ∈ Bn+1. Observe that

1− |z|2

(1 + ⟨x, z⟩)2
=

(
1− |y|2

|x+ y|2

)2

.(2.4)

Substituting (2.2) and (2.4) into (2.1), using the divergence theorem and
rearranging, we find that

|Σ| = |Σy|+
ˆ
Σ

(∣∣∣∣zNf + H⃗

∣∣∣∣2 − |H⃗|2
)
dv,

and from that we get the first part. In the nonorientable case, we use the
orientable double covering π : Σ̂ → Σ, equipped with the pullback metric.
Consequently, the Riemannian density dv̂ on Σ̂ satisfies π∗(∆h dv) = ∆̂ĥ dv̂.
In particular, we obtainˆ

Σ
∆h dv = 2

ˆ
Σ̂
∆̂ĥ dv̂ = 0,
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since π is a local isometry and ĥ = π∗(h).
If Σ is minimal and |Σ| = |Σy|, then zN = 0, which is equivalent to

yN = 0. Let h = ⟨x, y⟩ on Σ. Then

∇h = y − hx and ∇2h = −h⟨·, ·⟩.
By Obata’s theorem (cf. [24, Theorem A]), either Σ is isometric to S2, or
h = 0 on Σ. If h = 0, then ∇h = 0 = y. □

2.2. Extrinsic geometry of S1(r)×Sn(
√
1− r2) in Sn+2. In this section,

we study the geometric properties of the product space S1(r)× Sn(
√
1− r2)

when viewed as a hypersurface of Sn+2. These properties will be applied in
the proof of Theorem B.

Fix p ∈ M = S1(r) × Sn(
√
1− r2), and let {e1, e2, . . . , en+1} be an or-

thonormal basis of TpM , where e1 is tangent to S1(r) and e2, . . . , en+1

are tangent to Sn(
√
1− r2). A straightforward computation shows that

e1, e2, . . . , en+1 are principal directions of M , with corresponding principal
curvatures

κ1 = −
√
1− r2

r
, κ2 = · · · = κn+1 =

r√
1− r2

.

The Weingarten operator of M in Sn+2 is given by

(2.5) A(X) = −
√
1− r2

r
⟨X, e1⟩e1 +

n+1∑
i=2

r√
1− r2

⟨X, ei⟩ei, X ∈ TpM.

Then we obtain

(2.6) |A(X)|2 =
(

1

r2
− 1

1− r2

)
⟨X, e1⟩2 +

r2

1− r2
|X|2.

Let Σ be an immersed surface in M = S1(r) × Sn(
√
1− r2) ⊂ Sn+2.

Denote the second fundamental forms of Σ in M and in Sn+2 by σ and τ ,
respectively. Then, we can write:

(2.7) τ(X,Y ) = ρ(X,Y ) + σ(X,Y ),

and
|τ(X,Y )|2 = |ρ(X,Y )|2 + |σ(X,Y )|2

for all X,Y ∈ X(Σ), where ρ is the second fundamental form of M in Sn+2,
and in scalar form is given by ρ(X,Y ) = ⟨AX,Y ⟩.

Therefore, if {X1, X2} is an orthonormal basis for TpΣ, with p ∈ Σ, then

|τ |2 =
2∑

i,j=1

|τ(Xi, Xj)|2

=

2∑
i,j=1

|ρ(Xi, Xj)|2 +
2∑

i,j=1

|σ(Xi, Xj)|2

= |ρ|2Σ + |σ|2,
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where

|ρ|2Σ :=
2∑

i,j=1

|ρ(Xi, Xj)|2

is independent of the orthonormal basis {X1, X2} chosen.
Moreover, note that

(2.8) |ρ|2Σ =

2∑
i,j=1

|ρ(Xi, Xj)|2 = |A(X1)|2 + |A(X2)|2 −
2∑

i=1

|A(Xi)
⊥|2,

where A(Xi)
⊥ denotes the orthogonal projection of A(Xi) onto (TpΣ)

⊥, the
orthogonal complement of TpΣ in TpM .

Proposition 2.2. Let Σ be a connected, orientable, closed surface immersed
in S1(r)× Sn(

√
1− r2), with 1√

2
≤ r < 1. Then the following holds:

(2.9) |ρ|2Σ ≤ 2r2

1− r2
.

Moreover, in the case of equality:

(i) If r > 1√
2
, then Σ ⊂ {θ} × Sn(

√
1− r2) for some θ ∈ S1(r);

(ii) If r = 1√
2
, then either Σ ⊂ {θ} × Sn(

√
1− r2) for some θ ∈ S1(r),

or Σ is a torus and 2K = 4|H⃗|2 − |σ|2 on Σ.

Proof. Let p ∈ Σ. Given any orthonormal basis {X1, X2} of TpΣ, it follows
from equation (2.8) that

|ρ|2Σ ≤ |A(X1)|2 + |A(X2)|2,

with equality if and only if TpΣ is invariant under the shape operator A :
TpM → TpM .

From equation (2.6), we obtain:

|A(X1)|2+|A(X2)|2 =
(

1

r2
− 1

1− r2

)(
⟨X1, e1⟩2 + ⟨X2, e1⟩2

)
+

2r2

1− r2
≤ 2r2

1− r2
,

where e1 = ∂θ/r. This proves inequality (2.9).
Now suppose that equality holds in (2.9). Then TpΣ is invariant under

A for all p ∈ Σ. Since e1 is a principal direction of A associated with the
principal curvature −

√
1− r2/r, we must have, at each point p ∈ Σ,

(i) either e1(p) ⊥ TpΣ, or
(ii) e1(p) ∈ TpΣ.

Note that case (i) implies Σ ⊂ {θ} × Sn(
√
1− r2) for some θ ∈ S1(r),

which is the only possibility when r > 1/
√
2.

Now suppose r = 1/
√
2 and that e1(p) ∈ TpΣ for all p ∈ Σ. Then for any

orthonormal basis {X1, X2} of TpΣ with X1 = e1, we have A(X2) = X2.
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Applying the Gauss equation for the immersion Σ ⊂ M and using that
the sectional curvature of M vanishes in the direction (X1, X2), that is,
KM (X1, X2) = 0, we obtain:

K = ⟨σ(X1, X1), σ(X2, X2)⟩ − |σ(X1, X2)|2

=
1

2
(4|H⃗|2 − |σ|2).

Finally, since e1(p) ∈ TpΣ for all p ∈ Σ, the restriction π1|Σ : Σ →
S1, where π1 : S1(r) × Sn(

√
1− r2) → S1(r) is the canonical projection

π1(θ, w) = θ, is a submersion. This implies that Σ is foliated by circles, and
therefore Σ is a torus. □

3. Spectral characterization of surfaces with nonpositive
Euler characteristic in higher-dimensional spheres

In this section, we discuss the spectral characterization of surfaces with
nonpositive Euler characteristic immersed in higher-dimensional spheres.
Such characterizations naturally arise in the study of extremal metrics and
minimal immersions into spheres. This is, in fact, a highly active area of re-
search; see, for instance, [6, 7, 11, 12, 13, 14, 18, 22, 23, 27] and the references
therein.

We begin by recalling some fundamental properties of the special surfaces
appearing in Theorem A.

3.1. Minimal tori in spheres. The Clifford torus is the standard immer-
sion of the flat torus S1(1/

√
2)×S1(1/

√
2) into S3. This surface is a particu-

larly remarkable minimal surface in the 3-sphere and has been characterized
in various ways. For example, it is characterized by the norm of its second
fundamental form, as shown in [3], and by its Morse index in [25]. Moreover,
it is known to minimize the Willmore energy among positive genus surfaces,
as established in [20], and it has been proven to be the unique genus one
embedded minimal surface in S3, according to [2].

The equilateral torus is defined as the quotient R2/Γ, where

Γ = Z(1, 0)⊕ Z(1/2,
√
3/2).

In [23], Nadirashvili showed that the flat metric corresponding to the
equilateral lattice maximizes the first eigenvalue of the Laplace operator
among all metrics of the same volume on the 2-torus.

This torus also admits an isometric immersion in the unit sphere S5 ⊂ R6

and, along with the Clifford torus, was also characterized by El Soufi and
Ilias in the following theorem. We recall that an immersion h : Σ → Sn is
said to be full if its image is not contained in a great sphere of Sn, that is,
if the coordinate functions h1, . . . , hn+1 are linearly independent.

Theorem 3.1 (El Soufi-Ilias, [6]). Let Σ be a topological torus fully im-
mersed in the unit sphere Sn. If the coordinate functions of Σ are first
eigenfunctions of the Laplace operator on Σ, then either:
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(a) n = 3 and Σ is congruent to the Clifford torus; or
(b) n = 5 and Σ is congruent to the equilateral torus.

3.2. The Klein bottle as a minimal surface in the sphere. The Klein
bottle, K = RP 2#RP 2, is a closed, nonorientable surface of zero Euler
characteristic.

We recall that, in his seminal work [16], Lawson constructed infinite fam-
ilies of minimal surfaces in spheres for every genus. For instance, the map

ψ3,1(x, y) = (cos 3x cos y, sin 3x cos y, cosx sin y, sinx sin y)

defines a minimal immersion of R2 into S4, whose image is a torus denoted
by τ3,1.

Lawson observed that if ψ : S2 → S3 is a minimal immersion and ψ∗ :
S → S5 denotes its Gauss map, then the bipolar map

ψ̃ = ψ ∧ ψ∗ : S → S5

is also a minimal immersion. It turns out that, in the case of ψ3,1 (and for
other tori), its image, denoted by τ̃3,1, actually lies in S4, an equator of S5.
By [15, Theorem 1.3.1(3)], we know that τ̃3,1 is a Klein bottle.

We now recall the following important spectral characterization of the
Klein bottle as a minimal surface in S4 analogous to Theorem 3.1. This result
completes the previous work of Jakobson, Nadirashvili, and Polterovich in
[10].

Theorem 3.2 (El Soufi-Giacomini-Jazar, [4]). Let Σ be a topological Klein
bottle that is minimally and fully immersed in Sn. If the coordinate functions
of Σ are first eigenfunctions of the Laplace operator on Σ, then n = 4 and
Σ is congruent to Lawson’s bipolar surface τ̃3,1.

Remark 2. We point out that this metric is not flat, as proved by Nadi-
rashvili [23].

3.3. Eigenvalue estimate via Willmore energy. In this subsection, we
derive an upper bound for the second eigenvalue of the Jacobi operator of a
surface in the sphere in terms of its Willmore energy (2.3). As a consequence,
we obtain Theorem A. The result is stated as follows:

Theorem 3.3. Let Σ be a closed surface fully immersed in Sn. Then the
second eigenvalue of the Jacobi operator

L = −∆− |σ|2 − 2

satisfies the inequality

λ2(L)|Σ| ≤ −2W(Σ) + 4πχ(Σ),

where W(Σ) denotes the Willmore energy of Σ.
In particular, if χ(Σ) ≤ 0, then λ2(L) ≤ −2. If equality holds, that is,

λ2(L) = −2, then Σ is orientable and one of the following occurs:

(1) n = 3 and Σ is congruent to the Clifford torus;
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(2) n = 5 and Σ is congruent to the equilateral torus.

Proof. To analyze the second eigenvalue of the Jacobi operator L, we con-
sider a first eigenfunction φ > 0 of L. Following an argument contained in
the work of Li and Yau [18] (see also [9]), there exists y ∈ Bn+1 such that

ˆ
Σ
φ(Fy ◦ x) dv = 0,

or equivalently, ˆ
Σ
φψi dv = 0, i = 1, . . . , n+ 1,

where ψ1, . . . , ψn+1 are the coordinate functions of ψ = Fy ◦ x. Using these
functions as test functions for λ2 = λ2(L), we obtain

λ2

ˆ
Σ
ψ2
i dv ≤

ˆ
Σ
ψiLψi dv

=

ˆ
Σ
|∇ψi|2 dv −

ˆ
Σ
(|σ|2 + 2)ψ2

i dv, i = 1, . . . , n+ 1.

Summing over i = 1, . . . , n+ 1 and using
∑

i ψ
2
i = 1, we get

λ2|Σ| ≤
ˆ
Σ
|∇ψ|2 dv −

ˆ
Σ
|σ|2 dv − 2|Σ|,

where |∇ψ|2 =
∑

i |∇ψi|2. It is well known that the Dirichlet energy of
ψ = Fy ◦ x satisfies (see, e.g., [5, p. 7])

ˆ
Σ
|∇ψ|2 dv = 2|Σy|.

Thus, we obtain

λ2|Σ| ≤ 2|Σy| −
ˆ
Σ
|σ|2 dv − 2|Σ|.

From Lemma 2.1, we have the area bound

|Σy| ≤
ˆ
Σ
(1 + |H⃗|2) dv,

with equality if and only if H⃗ = − zN

f , where z = 2(1 + |y|2)−1y and f(x) =

1 + ⟨x, z⟩.
From the Gauss equation, we recall that

|σ|2 = 2 + 4|H⃗|2 − 2K,
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whereK is the Gaussian curvature of Σ. Substituting this identity and using
the Gauss-Bonnet theorem (cf. [17, Theorem 9.7]), we obtain

λ2|Σ| ≤ 2|Σy| −
ˆ
Σ
|σ|2 dv − 2|Σ|

≤ 2

ˆ
Σ
(1 + |H⃗|2) dv −

ˆ
Σ
(2 + 4|H⃗|2 − 2K) dv − 2|Σ|

= −2

ˆ
Σ
|H⃗|2 dv + 4πχ(Σ)− 2|Σ|,

where χ(Σ) is the Euler characteristic of Σ. And, thus, if χ(Σ) ≤ 0, we have

λ2|Σ| ≤ −2W(Σ) ≤ −2|Σ|.

Now, if λ2(L) = −2 then H⃗ must vanish, and all the above inequalities
must be equalities. Consequently:

(1) χ(Σ) = 0, so Σ is either a torus or a Klein bottle;
(2) |Σy| = |Σ|, implying y = 0 by Lemma 2.1;
(3) The coordinate functions ψ1, . . . , ψn+1 are eigenfunctions of L asso-

ciated with λ2 = −2, meaning

∆ψ + |σ|2ψ = 0.

Since y = 0, we have ψ = x, so

∆x+ |σ|2x = 0.

On the other hand, by the minimality of Σ, we also have ∆x + 2x = 0,
implying |σ|2 = 2. In particular, by the Gauss equation, Σ is flat and
−∆ = L+ 4. Since λ2(L) = −2 we get that the first non-zero eigenvalue of
the Laplacian of Σ is 2.

Therefore we have that Σ is flat and minimally immersed by the first
eigenfunctions of the Laplacian. Note that it follows from Theorem 3.2 and
Remark 2 that it cannot be a Klein bottle.

Thus, Σ is a torus and we conclude by Theorem 3.1 that Σ is congruent
to one of the following:

• the Clifford torus if n = 3;
• the equilateral torus if n = 5.

□

Using the solution of the Willmore conjecture of Marques and Neves [20,
Theorem A], we obtain the following direct consequence:

Corollary 3.4. Let Σ be a closed, orientable surface of positive genus im-
mersed in S3. Then,

λ2(L)|Σ| ≤ −4π2.

Moreover, if equality holds, then Σ is the Clifford torus, up to conformal
transformations of S3.
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4. Spectral characterization of surfaces in S1(r)× S2(s)

In this section, we present the proof of Theorem B, which provides a sharp
upper bound for the second eigenvalue of the Jacobi operator of compact
surfaces immersed in product spaces of the form S1(r)× S2(s). To simplify
the expressions and computations, we apply a homothety so that the radii
satisfy the normalization condition

r2 + s2 = 1,

which implies that the ambient manifold M = S1(r) × S2(s) is isometri-
cally embedded in the unit sphere S4 ⊂ R5. Under this normalization, the
statement of Theorem B becomes:

Theorem 4.1. Let Σ be a closed, orientable surface of positive genus im-
mersed inM = S1(r)×S2(

√
1− r2). If r ≥ 1/

√
2, then the second eigenvalue

λ2(L) of the Jacobi operator of Σ in M ,

L = −∆− (|σ|2 +RicM (N,N)),

satisfies
λ2(L) ≤ 0.

Furthermore, if λ2(L) = 0, then r = 1/
√
2, and Σ is congruent to the totally

geodesic torus S1(1/
√
2)× S1(1/

√
2) in S1(1/

√
2)× S2(1/

√
2).

Proof. Let φ > 0 be a first eigenfunction of L. By Li and Yau’s argument
[18], there exists y ∈ B5 such thatˆ

Σ
φ(Fy ◦ x) dv = 0,

i.e., ˆ
Σ
φψi dv = 0, i = 1, . . . , 5,

where x : Σ → M ⊂ S4 ⊂ R5 is the position vector and ψ = Fy ◦ x has
coordinate functions ψ1, . . . , ψ5. Using ψ1, . . . , ψ5 as test functions for λ2(L)
and applying the Gauss equation, we obtain:

λ2(L)|Σ| ≤
ˆ
Σ
|∇ψ|2 dv −

ˆ
Σ

(
|σ|2 +RicM (N,N)

)
dv

=

ˆ
Σ
|∇ψ|2 dv − 1

2

ˆ
Σ

(
RM + 4|H⃗|2 + |σ|2 − 2K

)
dv,

where RM = 2
1−r2

is the scalar curvature of M = S1(r)× S2(
√
1− r2).

On the other hand, the Gauss equation for Σ ⊂ S4 gives:

|τ |2 = 2 + 4|H⃗τ |2 − 2K,

where H⃗τ is the mean curvature vector of Σ in S4. From Proposition 2.2,
we also have:

|τ |2 = |ρ|2Σ + |σ|2 ≤ 2r2

1− r2
+ |σ|2,
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which implies:

|σ|2 ≥ 2 + 4|H⃗τ |2 − 2K − 2r2

1− r2
.

Combining the inequalities, we deduce:

1

2

(
RM + 4|H⃗|2 + |σ|2 − 2K

)
≥ 2 + 2|H⃗|2 + 2|H⃗τ |2 − 2K.

Therefore,

λ2(L)|Σ| ≤
ˆ
Σ
|∇ψ|2 dv −

ˆ
Σ

(
2 + 2|H⃗|2 + 2|H⃗τ |2 − 2K

)
dv.

Now, applying Lemma 2.1:ˆ
Σ
|∇ψ|2 dv = 2|Σy| ≤ 2

ˆ
Σ

(
1 + |H⃗τ |2

)
dv,

we get:

λ2(L)|Σ| ≤ −2

ˆ
Σ
|H⃗|2 dv + 4πχ(Σ) ≤ 0.

This proves that λ2(L) ≤ 0.
Suppose now that λ2(L) = 0. Then all inequalities above must be equal-

ities. In particular:

(i) H⃗ = 0, so Σ is minimal in M ;
(ii) χ(Σ) = 0, hence Σ is a torus;

(iii) |ρ|2Σ =
2r2

1− r2
.

By Proposition 2.2, equality in (iii) implies r = 1/
√
2 and that Σ is flat

and totally geodesic in M . Therefore, Σ is a finite covering of the totally
geodesic torus S1(1/

√
2)×S1(1/

√
2) ⊂ S1(1/

√
2)×S2(1/

√
2). Since L = ∆+2

and λ2(L) = 0, it follows that Σ must coincide with this torus. □

5. Examples of flat tori in S1(r)× S2(s), with r ≤ s

In this final section, we provide explicit examples that illustrate the neces-
sity of the hypotheses in Theorem B, especially the condition r ≥ s. For this
purpose, we compute the second Jacobi eigenvalue for a family of standard
flat tori immersed in the product space S1(r)× S2(s).

Let T2
r,t = S1(r)× S1(t) ⊂ R4 be the flat torus given by

T2
r,t = {(x1, y1, x2, y2) ∈ R4 | x21 + y21 = r2, x22 + y22 = t2}.

Fix h ∈ R, and define an immersion into S1(r)× S2(s) by
ϕ(x1, y1, x2, y2) = (x1, y1, x2, y2, h),

where s2 = t2+h2. The image is a flat torus embedded inM3 = S1(r)×S2(s).
A straightforward computation shows that the principal curvatures of this

torus are

κ1 = 0, κ2 =
h

st
.
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The eigenvalues of the Laplacian on T2
r,t are given by

λm,n =
m2

r2
+
n2

t2
, m, n ∈ Z,

so the first nonzero eigenvalue is

λ2(−∆) = min

{
1

r2
,
1

t2

}
.

Since the Jacobi operator is

L = −∆−
(

1

s2
+

h2

s2t2

)
= −∆− 1

t2
,

we obtain

λ2(L) = λ2(−∆)− 1

t2
= min

{
1

r2
,
1

t2

}
− 1

t2
.

We now consider two cases:
Case 1: r ≥ t. In this case, λ2(−∆) = 1

r2
≤ 1

t2
, and therefore:

λ2(L) =
1

r2
− 1

t2
≤ 0.

This is consistent with the upper bound in Theorem B.
Case 2: r ≤ t. Here, λ2(−∆) = 1

t2
, and hence:

λ2(L) =
1

t2
− 1

t2
= 0.

In this case, although the second eigenvalue is zero, the torus is not totally
geodesic (unless h = 0). Indeed, since s2 = t2 + h2, we find that r ≤ t < s,
and hence r < s.

These examples highlight the sharpness of Theorem B and its dependence
on the geometric constraint r ≥ s.
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