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Abstract

This paper investigates the geometric consequences of equality in area-charge
inequalities for spherical minimal surfaces and, more generally, for margin-
ally outer trapped surfaces, within the framework of the Einstein—-Maxwell
equations. We show that, under appropriate energy and curvature conditions,
saturation of the inequality A > 47 (Q% + Q%) imposes a rigid geometric
structure in a neighborhood of the surface. In particular, the electric and mag-
netic fields must be normal to the foliation, and the local geometry is isometric
to a Riemannian product. We establish two main rigidity theorems: one in the
time-symmetric case and another for initial data sets that are not necessarily
time-symmetric. In both cases, equality in the area-charge bound leads to a
precise characterization of the intrinsic and extrinsic geometry of the initial
data near the critical surface.
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1. Introduction

In his influential 1999 paper, Gibbons [21] explores the profound interplay between geometry
and gravitation, with particular emphasis on the role of inverse mean curvature flow (IMCF) in
the understanding of gravitational entropy. Among the key results discussed is the derivation of
an area-charge inequality, which asserts that, under natural energy conditions, the area .4 of a
closed, stable minimal surface enclosing an electric or magnetic charge Q in a time-symmetric
initial data set must satisfy

A>4m Q% (1.1)

Asnoted in [21], this inequality also extends to maximal initial data sets that are not necessarily
time-symmetric.

Inequality (1.1) expresses a fundamental geometric constraint imposed by general relativ-
ity: the area of a black hole horizon cannot be arbitrarily small for a given charge. In other
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words, if a black hole were to have charge Q but an area smaller than 47 Q?, it would contra-
dict physical expectations.

More recently, Dain et al [13] extended inequality (1.1) to the setting of dynamical black
holes without making any symmetry assumptions. They showed that, if ¥ is an orientable,
closed, marginally outer trapped surface satisfying the spacetime stably outermost condition',
in a spacetime that obeys the Einstein equations

G+ Ah =8 (T™M 4 7m) |

with a non-negative cosmological constant A, and where the non-electromagnetic matter field
Tmater gatisfies the dominant energy condition DEC, then the following area-charge inequality
holds:

A>4r (Qf+ Q) (1.2)

where A, O, and Qy denote the area, electric charge, and magnetic charge of ¥, respectively.
Notably, no assumption is made that the matter fields are electrically neutral.

The aim of this paper is to investigate the geometric consequences of equality in (1.1)
or (1.2), formulated in terms of initial data. More precisely, we show that, under suitable con-
ditions, equality in either (1.1) or (1.2) implies that the initial data set containing ¥ exhibits a
specific, expected geometric structure in a vicinity of 3.

Our first result is the following (see section 2 for definitions):

Theorem 1.1. Let (M, g) be a Riemannian three-manifold with scalar curvature R satisfying

1
5R>A+|E|2+\B\2, (1.3)

where A is a non-negative constant representing the cosmological constant, and E and B are
divergence-free vector fields on M representing the electric and magnetic fields, respectively.

If X is an area-minimizing two-sphere embedded in (M, g), then the area, electric charge,
and magnetic charge of 3 satisfy

A>4m (QF +Qy) -

Moreover, if equality holds, then there exists a neighborhood U =2 (—§,0) X X of ¥ in M such
that:

(1) The electric and magnetic fields are normal to the foliation; more precisely,
E=av;, B=by,

Sfor some constants a and b, where v, is the unit normal to &, = {t} x ¥ along the foliation,
pointing to the outside of ¥;.

I See definition 3.2 in [13].
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() (U, g) is isometric to ((—8,6) x X,di* + go) for some § > 0, where the induced metric g,
on X has constant Gaussian curvature

= a + b
(3) The cosmological constant A\ equals zero.

Our second result is a generalization of theorem 1.1 to initial data sets that are not neces-
sarily time-symmetric. It reads as follows (see section 2 for definitions):

Theorem 1.2. Let (M3, g,K,E,B) be a three-dimensional initial data set for the Einstein—
Maxwell equations satisfying the charged DEC

p+J(v) = A+|E* +|B]* —2(E x B,v) (1.4)

for every unit vector v € T,M, every point p € M, and some constant A > 0. Assume that E
and B are divergence-free and that K is two-convex.

Let 3 be a weakly outermost, spherical MOTS in (M, g,K). Then the area, electric charge,
and magnetic charge of 3. satisfy

A>4m(Q+ Q)

Moreover, if equality holds, then there exists an outer neighborhood U = [0,5) x X of X in M
such that:

(1) The electric and magnetic fields are normal to the foliation; more precisely,
E=av,, B=by,

for some constants a and b, where v, is the unit normal to ¥, = {t} x X along the foliation,
pointing to the outside of ¥;.

() (U, g) is isometric to ([0,8) x X,d> + go) for some § > 0, where the induced metric gy on
Y has constant Gaussian curvature

Ky =a*+b°.

(3) The second fundamental form satisfies K = fdt* on U, where f € C*(U) depends only on
t€10,90).
(4) The energy and momentum densities satisfy

p=a*+b*, J=0 on U.
(5) The cosmological constant A\ equals zero.

The norms and inner products in theorems 1.1 and 1.2 are computed with respect to the
metric g.

In section 2, we derive inequalities (1.3) and (1.4) from the DEC for the energy-momentum
tensor 7™mater,

It is worth noting that a version of theorem 1.1 remains valid when ¥ is assumed to be
weakly outermost rather than area-minimizing. However, in this case, if equality holds, then
an outer neighborhood of > must split. This result corresponds to theorem 1.2 in the time-
symmetric setting.
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The paper is organized as follows: In section 2, we present some preliminaries necessary
for a proper understanding of this work. In section 3, we provide the proofs of theorems 1.1
and 1.2. Finally, section 4 offers a model illustrating these results.

2. Preliminaries

In this paper, we work in the C*° category. Thus, unless otherwise stated, all manifolds, vector
fields, functions, etc are assumed to be smooth.

Let (M?,g,K) be a three-dimensional initial data set in a four-dimensional spacetime
(V“, h); that is, M is a spacelike hypersurface in (V, k) with induced metric g and second fun-
damental form K, taken with respect to the future-directed timelike unit normal to M. Assume
that (V, h) satisfies the Einstein equations with cosmological constant A:

G+ Ah = 8r (T™M + 7™ ,

where G = Ricy, f%th is the Einstein tensor of (V, k), T*M is the electromagnetic energy-
momentum tensor, and 7™’ is the energy-momentum tensor associated with non-
gravitational and non-electromagnetic matter fields.

The electromagnetic energy-momentum tensor 7°M is given by

1 1
M d
b = 1 (FachC 1 caF* hub) ;
where F is the electromagnetic 2-form, which is also referred to as the Faraday tensor. Here
Latin indices correspond to those of the spacetime coordinate system.

Let u be the future-directed timelike unit normal vector field along M. As is standard, by
the Gauss—Codazzi equations,

1
(ww) = 5 (R~ |KP -+ 7).,

(u,") =div(K—T1g),
where R is the scalar curvature of (M, g) and 7 = tr K is the mean curvature of M in (V, h) with

respect to u.
The electric and magnetic vector fields E and B on M are defined in such a way that

b
Ea:Fabua

1
BazfathCa
26

where €, is the induced volume form associated with the metric g. Specifically, if € denotes
the volume form of the spacetime metric /, then €. = u?€ 4. In the main results of this paper,
we assume the absence of charged matter, that is, we assume that divE = divB = 0.

We refer to (M, g, K, E, B) as initial data for the Einstein-Maxwell equations.

Standard calculations give that

1
T () = o (B + |BF)

TEM(u,v) = —L<E>< B,v),
4
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for any vector v tangent to M, where (E x B), = eancEPBC defines the cross product of E and
B, which is known in the literature as the Poynting vector.
Now assume that TM2"°" gatisfies the DEC:

T™" (X, Y) > 0 for all future-directed causal vectors X, Y.
Therefore,

G (u,u) + Ah (u,u) = 8 (T (u,u) + T (u,u)) = 87 T (u,u),
and thus

p= A+ |EP+ B
In this case, if M is maximal (in particular, if M is time-symmetric), then

1
5R>A+|E|2+\B\2. 2.1)

More generally, when M is not necessarily maximal, it holds that
G (u,u~+v) + Ah (u,u+v) = 87 T*M (w,u +v),
and so
p+J(v) = A+ |E|* + |B]* — 2(E x B,v), (2.2)

for every unit vector v tangent to M.

Inequalities (2.1) and (2.2) are commonly referred to as the charged DEC and have been
considered in numerous situations (see, e.g. [1, 8, 11, 13, 19, 21-23, 29]).

Now let X2 be a closed embedded surface in M>.

In this paper, we assume that 3 and M are orientable; in particular, X is two-sided. Then
we fix a unit normal vector field v along ¥; if ¥ separates M, by convention, we say that v
points to the outside of 3.

In the sequel, we are going to present some important definitions to our purposes.

The electric and magnetic charges of X are defined, respectively, by

1 1
0= [wn). Qu=g [ @)

The null second fundamental forms x+ and Y~ of X in (M, g,K) are defined by
X" =Kls+A, x~ =Kz -4,
where A is the second fundamental form of ¥ in (M, g) with respect to v; more precisely,
AX,Y)=g(Vxr,Y) for X, YeX(X),

where V is the Levi—Civita connection of (M, g).
The null expansion scalars or the null mean curvatures 6% and 6~ of X in (M, g,K) with
respect to v are defined by

0t =trxt =trs K+H®, 0~ =try” =trgK—H",

where H> = trA is the mean curvature of ¥ in (M, g) with respect to v, and try, K is the partial
trace of K on ¥. Observe that 6+ = try*.
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After Penrose, X is said to be trapped if both 8T and 6~ are negative.

Restricting our attention to one side, we say that X is outer trapped if 7 is negative and
marginally outer trapped if T vanishes. In the latter case, we refer to X as a marginally outer
trapped surface or a MOTS, for short.

Assume that ¥ is a MOTS in (M, g,K), with respect to a unit normal v, that is a bound-
ary in M; more precisely, v points towards a top-dimensional submanifold M+ C M such that
OMT = 3. Then we say that ¥ is outermost (resp. weakly outermost) if there is no closed
embedded surface in MT with 8T <0 (resp. T < 0) that is homologous to and different
from 3.

We say that X minimizes area in M if X has the least area in its homology class in M; id est,
A(X) < A(X') for every closed embedded surface 3’ in M that is homologous to ¥.. Similarly,
¥ is said to be outer area-minimizing if ¥ minimizes area in M.

An important notion that we are going to recall now is the notion of stability for MOTS
introduced by Andersson et al [5, 6].

Let ¥ be a MOTS in (M, g,K) with respect to v and ¢t — ¥, be a variation of ¥ = ¥ in
M with variation vector field ghzo = ¢, for some ¢ € C>(X). Denote by 6*(¢) the null
expansion scalars of X, with respect to the unit normal v,, where v = v;|;—o. It is well known
that (see [6])

o6+

| = A6 +2X Ve) + (0 - X +divX) ¢,

where A and div are the Laplace and divergence operators of 3. with respect to the induced
metric, respectively; X € X(X) is the vector field that is dual to the 1-form K(v,)|x, and

1
0 =rs—(u+J(v) = X"

Here xx, represents the Gaussian curvature of ..
At this point, it is important to emphasize that, in the general case (i.e. when ¥ is not
necessarily a MOTS), the first variation of 07 (see, e.g. [4]) is given by

a0+

— | =—-A¢p+2(X,V¢)+ (Q— 1X|? + divX — Lot +70+> .
ot =0 2

The operator

Lp = —Ap+2(X,V¢) + (Q— [X|* +divX) ¢, ¢€C®(%),

is referred to as the MOTS stability operator. It can be proved that L has a real eigenvalue
A1, called the principal eigenvalue of L, such that Re A > \; for any complex eigenvalue \.
Furthermore, the associated eigenfunction ¢, Lo; = A\ ¢y, is unique up to scale and can be
chosen to be everywhere positive.

The principal eigenvalue A; (L) of the symmetrized operator £ = —A + Q is characterized
by the Rayleigh formula (see Lemma 1.34 and its proof in [10]):

M (L) = min —fz (|Vu|2 + Qu2)

. 2.3
ueC=(£)\{0} Jsu? 3

Furthermore, the eigenfunctions of £ associated with A; (L) are the only functions that attain
the minimum in (2.3).
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It was proved by Galloway and Schoen (see [16, 20]) through direct estimates, and by
Andersson et al [6] using a different method, that A; (L) < A\(L).

We say that X is stable if A;(L) > 0; this is equivalent to saying that L¢ > 0 for some pos-
itive function ¢ € C*°(X). It is not difficult to see that, if ¥ is weakly outermost (in particular,
if 2 is outermost), then X is stable.

Before concluding this section, let us recall the notion of 2-convexity. The tensor K is said
to be 2-convex if, at every point, the sum of its two smallest eigenvalues is non-negative. In par-
ticular, if K is 2-convex, then trs; K > 0 along Y. This convexity condition has been employed
by the author in related contexts [14, 15, 18, 25, 26] (see also [24]).

3. Proofs

This section is devoted to the proofs of the main results of the paper, namely theorems 1.1
and 1.2. We begin by proving theorem 1.2. The proof of theorem 1.1 follows a similar structure.
As a first step, we establish an auxiliary infinitesimal rigidity result, which plays a crucial
role in the argument.
For convenience, we define the fotal charge of ¥ as

Or =/ Q¢+ -

Proposition 3.1. Let (M?,g,K,E,B) be a three-dimensional initial data set for the Einstein—
Maxwell equations satisfying the charged DEC

pAJ(v) = A+ |E* + B> —2(E x B,v)

for every unit vector v € T,M, every point p € M, and some constant A > 0.
Let X be a stable, spherical MOTS in (M, g,K). Then the area and total charge of ¥ satisfy

A >4 O3 3.1)

Moreover, if equality holds, then the following conditions are satisfied.:

(1) The normal components of the electric and magnetic fields along . are constant, say
(E,v) =aand (B,v) =b.

(2) X is a round two-sphere with constant Gaussian curvature Ky, = a’ + b

(3) The constants \i(L), A\ (L), and A equal zero.

Proof. Since X is stable and A\ (L) < A\;(£), we have the following inequality for every u €
C>(%):

0<A1(£)/u2</ (IVuP +0iP).
b >

Taking u = 1, we obtain
1
v<n(as [o= [ (HE(H+J(V))X+|2)
> > 2

§47r7/2(u+./(1/)), (3.2

where we have used the Gauss—Bonnet theorem.
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Now observe that

A+ |E]* + |B|* = 2(E x B,v)
ETP+ (BT[> —2(E" x BT ,v) + (E,v)* + (B,v)?, (3.3)

pw+J(v) =
>

where E" and B are the tangent components to X:
E'=E—(Ev)v, B' =B—(B,v)v.
On the other hand, it is not difficult to see that
ETP+|BTR—2(ET xBT,v) > (ET|—|BT])* > 0. (3.4)

Using these estimates, we conclude that

0<47T—/2(<E,1/>2+<B,V>2).

Applying the Cauchy—Schwarz inequality, we obtain

(47 Qg)* = (/E<E,1/>)2 < .A/Z<E,y>2. (3.5)

Similarly,
(@m0 <A [ (B (3.6)
pX

Therefore,
0<A—dr(Q2+ Q%) =A—410r (D),

proving the desired inequality.
If equality in (3.1) holds, then all inequalities above must also be equalities. In particular:

e Second equality in (3.5) implies that (E,v) is constant, say (E,v) = a. Similarly, equality
in (3.6) gives that (B,v) = b is constant.
e Equalities in (3.3) and (3.4) imply
A=0, u+J(v)=(Ev)*+(Bv) =d+b.

e Equalities in (3.2) furnish that A\;(£) =0, x* =0, and u = 1 is an eigenfunction of £ asso-
ciated with \{(£). Therefore,

0=Q0=kry—(u+J(v)),
and thus
ke =pu+J (V) =d> + b
Finally, since 0 < A (L) < A\ (£) = 0, we conclude that A\; (L) = 0. O

8
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It is worth noting that proposition 3.1 is a quasi-local statement, in the sense that it depends
only on the intrinsic and extrinsic geometric data on 3, not on the behavior of the initial data
set in a neighborhood of the surface.

Proof of theorem 1.2. Since X is weakly outermost and, in particular, stable, it follows from
the infinitesimal rigidity (proposition 3.1) that

A>4n Q%.
Furthermore, if equality holds, then A (L) = 0 (and A = 0). Thus, an outer neighborhood U
[0,9) x X of 3 in M is foliated by constant outward null mean curvature surfaces ¥, = {t} x X
(see [17, lemma 2.3]), with >y = > and

g= H*dr? +g on U,

where g, is the induced metric on %,.
On 33;, we recall that

1
‘:Tf = —A¢p +2(X,V¢)+ (Q — |X)* +divX — 502 +79> o,

where 6 = 6(¢) is the null mean curvature of ¥, with respect to v, = ¢~ 19,
Dividing both sides of last equation by ¢ and integrating over X, we obtain

9'/ 1y Tz/ (divy_y|2+Q—192)</Q
E¢ I >, 2 )
1
— [ (s~ e g0 = 310

<an— [ (s, (3.7)

where Y =X —VIn¢.
Using the proof strategy from proposition 3.1, we have

pw+J(v) > |E* +|B)* —2(E x B,v,) > (E,1,)* + (B,1;)*. (3.8)

Thus,

/ l_ _ 2 2
0 /z,cﬁ 0 E,r<47r /E,(<E7Vt> + (B, 1)?)

(o) (o)

A1)

B 47 01 (1)°
=47 <1 —A(t)>, (3.9)

<4mr—

where A(r) and Qr(r) are the area and total charge of ¥,, respectively.

9
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Because we are assuming 47 Qr(0)? = .A(0) and divE = divB =0 (implying Or(f) =
91(0)), we find

e’(“‘ﬁ/ﬁé) w(*}tfr’)/E,T) < A(t) — 47 01 (1)?
— A1) — A(0)

:/ (/ HE‘qb)ds, (3.10)
0 IR

where we have used the fundamental theorem of calculus along with the first variation of area
formula.
Since, by hypothesis, K is 2-convex, it follows that

H <trg K+ H™ =0(s). (3.11)

ro (5 o) oo L)< e (o)

Since ¥ is weakly outermost, we have 6(¢) > 0 for each . Then, using lemma 3.2 in [25],
we conclude that 6(¢) = 0, forcing all inequalities above to be equalities.
Thus:

Therefore,

e Equalities in (3.11) give that trs, K = H** = 0 along ¥,. In particular,
0~ (t) =trs, K—H™ =0

for every t € [0,0).
e Equalities in (3.10) imply that all surfaces 3, have the same area as 3: A(z) = A(0).
e Equalities in (3.8) hold, that is,

pAJ(v) = |E* + B> = 2(E x B,v;) = (E,v,)* + (B, v;)? (3.12)
along %, for every ¢ € [0,0).

e Finally, equalities in (3.7) imply ¥ = X — VIn¢ = Oand x;” = 0 along %,. Indeed, equalities
in (3.7), together with 8’ = 6 = 0, yield

[ cvreo)= [ o= [ (-G sn -3 P)

—4w/2t(u+f(vt))~

The first equality implies ¥ = 0, and the last one gives x; = 0. (Recall that fE, Ky, =47 by
the Gauss—Bonnet theorem).

Now, taking the first variation of 6~ () = 0, with ¢~ = —¢ instead of ¢, we obtain

0= ddit_ = —A¢™ +2(X", Vo) + (07 — [X P +divX) ¢, (3.13)
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where X~ = (K(~v,)|s,)* = —X = —VIn¢, and

|
0" =z, —(n=J(m) = s b I*

Thus, dividing both sides of (3.13) by ¢~ = —¢ and integrating over ¥, we get
0:/ (divy” =y P+07) < / 0 < 47rf/ (n=J(w), (.14
N P t

where Y~ =X~ — VIn¢ = —2VIn¢. Above we have used the Gauss—Bonnet theorem.
Observe that

w—J () > |E* + B> +2(E x B,v)) > (E,v,)* + (B,v,)*. (3.15)

Therefore,

0<47T—/E (u—.l(y,))<4ﬂ'—/E ((E,m)z—i—(B,yt)z)

470 ()7 A0))
<47T<1—A(t)>—47r(1—A(t)>—0,

thus all inequalities above must be equalities.
Then:

e From (3.12) and equalities in (3.15), we have

|EP + B> = 2(E x B,vy) = (E,11)* + (B,v)?
= |EP* +|B* + 2(E x B,v;).
Therefore, (E x B,v,) = 0 and |E|* + |B|* = (E,v;)? + (B, ;). Thus, E and B are parallel to
vy, say E = av, and B = by,. Furthermore, from the second equality in (3.9), we obtain that
a = a(t) and b = b(t) are constant on %,.

e Equalities in (3.14) imply Y~ = —2VIn¢ =0 and x, = 0 along ¥,. Therefore, ¢ = ¢(7)
is constant on X, for each 7 € [0,0). In this case, after a change of variable if necessary, we
may assume that ¢ = 1. Moreover, x;" = K|s, + A, =0and x; = K|x, — A, = 0 imply that
K|s, =0 and ¥, is totally geodesic in (M, g). This gives that

g=df +go on U=[0,6)x X,
where g is the induced metric on 3.
e Because divE = divB = 0, we can see that a e b are constant.
e Looking at (3.12) and equalities in (3.15) again, we get
p+J(w)=a*+b*=p—J(v).
Therefore,
p=a*+b, J(v)=0.

1
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e It follows from (3.13) that
0=Q0 =#ky,—p .. Ky, =p=a>+b.
e Given a unit vector v tangent to M, we are assuming that
p+J() = |EP+|B? —2(ExB,v) =d* +b* = pu.

Therefore, J(v) > 0 for every v, that is, J =0.

e Finally, K|s, = 0, K(v,-)|x, = X* = 0, and J = div(K — 7¢) = 0 give that K = fd¢*> on U =
[0,d) x X, where f depends only on t € [0,0).

This concludes the proof of theorem 1.2. 0

We now proceed with the proof of theorem 1.1. To this end, we first present the following
auxiliary result:

Proposition 3.2. Let (M>,g) be a three-dimensional Riemannian manifold whose scalar
curvature R satisfies

1
SR> A+ |EP + B,

where A is a non-negative constant, and E and B are vector fields on M.
If ¥ is a stable, minimal two-sphere embedded in (M, g), then the area and total charge of
> satisfy

A > 4m Q3. (3.16)

Moreover, if equality holds, then the following conditions are satisfied.:

(1) The electric and magnetic fields are parallel to v; more precisely,
E=av, B=bv,

for some constants a and b.
(2) ¥ is a round two-sphere with constant Gaussian curvature ks, = a* + b.
(3) X is totally geodesic, A = 0, and R = 2(a®> + b*) on X.

Itis worth noting that inequality (3.16) was originally derived by Gibbons [21] (see also [13,
theorem 4.4]). Our contribution lies in establishing the infinitesimal rigidity statement.

Proof. Since ¥ is a stable minimal surface, the stability inequality says that (see, e.g. [10,

section 1.8])
1
7/ (R+|A|2)u2</ \Vu|2+//fgu2
2 /s > )

for every u € C*°(X). Taking u = 1, we obtain

1

f/R<47T, (3.17)
2 s

where we have used the Gauss—Bonnet theorem.

12
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Next, using the estimate

1
SR> A+ P+ [B[* > (E,v)” + (B,v)”, (3.18)

we conclude that

/Z ((E,I/>2 + <B,V>2) < 4.

Finally, applying the Cauchy—Schwarz inequality yields

(4’/TQT)2(/Z<E,I/>>2+</ Bz/) A/ ((E,v)? + (B,)?) <4r A, (3.19)

which proves inequality (3.16).

Now suppose that equality holds in (3.16). Then equality must also hold in each of the steps
above.

Equality in (3.17) implies that X is totally geodesic and that ug = 1 is a Jacobi function on
Y (see [10, lemma 1.34]):

1
Au0+§ (R—2ks +|A)up=0 on X.

Therefore, R = 2ky..

Equality in (3.18) implies A = 0, and that E and B are parallel to v along ¥, i.e. E = av and
B = bv for some functions a, b.

Finally, second equality in (3.19) implies that (E,v) and (B, v) are constant, hence a and b
are constant functions. O

Proof of theorem 1.1. Since ¥ is area-minimizing (in particular, stable minimal), it follows
from proposition 3.2 that A > 47 Q2. Furthermore, if equality holds, then the Jacobi operator
of X reduces to —A.

Therefore, as in the proof of theorem 1.2, by a classical argument in the literature (see, e.g.
[3, 7, 27, 28]), a neighborhood U 2 (—§,§) x X of ¥ in M can be foliated by constant mean
curvature surfaces 3, = {t} x X, with ¥y = ¥ and

g=¢*d+g on U.

The first variation of H(#) := H> gives (see, for instance, the appendix of [2])
g

1
H =—-A¢ — 3 (R—2ks, + A/ + H?) ¢.

H//E,;: / ¢
<_/ VoP

5 ¢

Thus,

t

R+ 4w
P

1
2L ey [
2 P 2
1
2
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Using the estimates
1
3R> [EP + B > (E.v)* + (B.m)?,

and applying the Cauchy—Schwarz inequality, we obtain

, 1 47TQT(I)2

On the other hand, 47 Q1(f)> = 47 Q1(0)? = A(0), since div E = div B = 0. Therefore,

H%Qé;f§jgtﬂﬂ—A®»=Jﬁ5A}H@<éﬁ>w,

that is,

t
w0 < [ H6ews a0=52 [ L = [ o
0 T Js, ¢ =

where we have used the fundamental theorem of calculus together with the first variation of
area formula. This holds for every 7 € (—4,9).

It follows directly from lemma 3.2 in [25] that H(¢) < O for every ¢ € [0,6). Similarly, by
applying the same strategy as in the proof of lemma 3.2 in [25] for p(f) = 0, it is not difficult
to show that H(¢) > 0 for every 7 € (—4,0]. Therefore,

rin <0 for t€]0,9),
A (t)_/lH(t)(b{ >0 for te(—4,0]. (3.20)

In any case, A(f) <.A(0) for every 7 € (—4,6). This implies that A(r) = .A(0) for all ¢ €
(—6,9), since g = X is area-minimizing. Using this in (3.20), we obtain that H() =0 for
every t € (—0,0). Therefore, all inequalities above must be equalities.

Thus, each ¥, is an area-minimizing surface satisfying A(¢) = 47 Qr(t)?. Then, by propos-
ition 3.2,

e E=av, and B = by;, where a = a(t) and b = b(¢) are constant on X,;

e Each ¥, is a totally geodesic round two-sphere with constant Gaussian curvature xx, = a” +
b?;

e R=2(a’+b*) on 3, for each t € (—4,6).

Finally, since divE = divB = 0, we conclude that a and b are constant functions. Standard
calculations guarantee theorem 1.1. 0

Remark 3.3. An important result in the theory of marginally outer trapped surfaces(MOTYS) is
theorem 3.1 in [17], which states that if (M"*!, g,K) is an initial data set satisfying the DEC,
w = |J), and if ¥" C M"*! is a closed weakly outermost MOTS that does not admit a metric of
positive scalar curvature, then an outer neighborhood of 3 can be foliated by MOTS. In fact,
each leaf ¥, of this foliation has vanishing outward null second fundamental form (x;" = 0)
and is Ricci flat. Example 4.2 in [15] shows that this result is sharp, in the sense that (M, g)
does not necessarily split as a Riemannian product in a neighborhood of 3 unless additional

14
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assumptions are made on X and/or on the initial data (for instance, that X is outer volume-
minimizing and K is n-convex; see [15, theorem 5.2]).

In our setting, although we assume that 322 is weakly outermost and (M, g, K) satisfies
the CDEC (or the DEC when B =0), we cannot a priori guarantee the existence of such a
foliation by MOTS without imposing additional conditions—for instance, that A = 47 Q3.
This is because, in our case, > admits a metric of positive scalar curvature, as we assume that
. is topologically a two-sphere.

4. The model
Let ¢ > 0 and consider the dyonic Bertotti—-Robinson spacetime (V*, /) defined by
V=RxRxS* h=qg"(—cosh’rd? +d*+df* +sin’0dg?).
Note that (V, h) is the direct product of a two-dimensional anti-de Sitter space of curvature
—1/4q* and a round two-sphere of curvature 1/¢>. Consequently, one can verify that

. 1 .
RlCh = ? dlag (—hn, —hrr, hgg,h¢¢) .

In particular, the scalar curvature of (V, h) vanishes.
Now let g, and g,, be constants and define the Faraday tensor F by

F = —qg.coshrdt Adr+ q,,sin6df A de.

A direct computation shows that the associated electromagnetic energy-momentum tensor 7°M
takes the form

TEM_LQ&‘H];Z;:

=5 = diag (—hu, —hyr, hog, hpg) -

Therefore, by choosing g, and g,, such that g*> = g2 + g2, the spacetime (V,h) satisfies the
Einstein equations with zero cosmological constant:
Ric; = 87 T°M.

Observe that each t-slice M = {t} x R x §? is time-symmetric and isometric to the
Riemannian product of a line with a round two-sphere of Gaussian curvature 1/g>.
Furthermore, the electric and magnetic vector fields on M are given by

1
E= q—ZV, B= q—'glj, v:i=—0,.
q q q
The coordinates of E are
=% p_p o
q

Thus, its divergence with respect to the induced metric g on M is

. 1 A1 S
divE = JTTgai (\/deth) = Fsind 0y (gesinh) = 0,
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since E? = E® = 0 and g, is constant. Analogously, divB = 0.
Finally, consider the 2-sphere ¥ = {t} x {r} x S2. The electric charge enclosed by ¥ is

1 1 g.
=— [(Evy=—ZA=q,.
% 47T/2< ) 477qu 1

Similarly, the magnetic charge is
Om = qm-

Clearly, 3 and M satisfy all the assumptions of theorems 1.1 and 1.2 with A = 47 Q3.
For a detailed discussion of the Bertotti—Robinson spacetime with g, = 0, as well as other
notable spacetimes in dimension D > 4 with vanishing magnetic field, see [9].

5. Conclusions

In this work, we have investigated the geometric consequences of equality in the area-charge
inequalities for both time-symmetric minimal surfaces and more general marginally outer
trapped surface MOTS within the Einstein—-Maxwell framework. Our results show that, under
suitable energy and curvature conditions, saturation of the inequality A > 4m(QZ% + Q%)
imposes strong rigidity on the local geometry: the local metric splits as a Riemannian product,
the electric and magnetic fields must be normal to the foliation, and various geometric and
physical quantities are fully determined.

These rigidity results provide a precise characterization of the local geometric and electro-
magnetic structure around weakly outermost MOTS in initial data sets satisfying the charged
DEC. In particular, they highlight the intimate connection between area-charge equality and
the underlying geometric and electromagnetic fields, offering insight into the rigidity of
extremal configurations in general relativity. In [12], in a joint work with Cruz, we extend
these rigidity phenomena to both compact and noncompact time-symmetric initial data sets,
establishing sharp area-charge inequalities and analyzing the corresponding rigidity of the
boundary and ambient geometries under suitable assumptions, including cases with different
boundary topologies.
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