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Abstract
This paper investigates the geometric consequences of equality in area-charge
inequalities for spherical minimal surfaces and, more generally, for margin-
ally outer trapped surfaces, within the framework of the Einstein–Maxwell
equations. We show that, under appropriate energy and curvature conditions,
saturation of the inequality A⩾ 4π(Q2

E +Q2
M) imposes a rigid geometric

structure in a neighborhood of the surface. In particular, the electric and mag-
netic fields must be normal to the foliation, and the local geometry is isometric
to a Riemannian product. We establish two main rigidity theorems: one in the
time-symmetric case and another for initial data sets that are not necessarily
time-symmetric. In both cases, equality in the area-charge bound leads to a
precise characterization of the intrinsic and extrinsic geometry of the initial
data near the critical surface.

Keywords: area-charge inequality, minimal surfaces,
marginally outer trapped surfaces, local rigidity results

1. Introduction

In his influential 1999 paper, Gibbons [21] explores the profound interplay between geometry
and gravitation, with particular emphasis on the role of inverse mean curvature flow (IMCF) in
the understanding of gravitational entropy. Among the key results discussed is the derivation of
an area-charge inequality, which asserts that, under natural energy conditions, the areaA of a
closed, stable minimal surface enclosing an electric or magnetic chargeQ in a time-symmetric
initial data set must satisfy

A⩾ 4πQ2. (1.1)

As noted in [21], this inequality also extends tomaximal initial data sets that are not necessarily
time-symmetric.

Inequality (1.1) expresses a fundamental geometric constraint imposed by general relativ-
ity: the area of a black hole horizon cannot be arbitrarily small for a given charge. In other
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words, if a black hole were to have charge Q but an area smaller than 4πQ2, it would contra-
dict physical expectations.

More recently, Dain et al [13] extended inequality (1.1) to the setting of dynamical black
holes without making any symmetry assumptions. They showed that, if Σ is an orientable,
closed, marginally outer trapped surface satisfying the spacetime stably outermost condition1,
in a spacetime that obeys the Einstein equations

G+Λh= 8π
(
TEM +Tmatter

)
,

with a non-negative cosmological constant Λ, and where the non-electromagnetic matter field
Tmatter satisfies the dominant energy condition DEC, then the following area-charge inequality
holds:

A⩾ 4π
(
Q2

E +Q2
M

)
, (1.2)

whereA,QE, andQM denote the area, electric charge, and magnetic charge ofΣ, respectively.
Notably, no assumption is made that the matter fields are electrically neutral.

The aim of this paper is to investigate the geometric consequences of equality in (1.1)
or (1.2), formulated in terms of initial data. More precisely, we show that, under suitable con-
ditions, equality in either (1.1) or (1.2) implies that the initial data set containing Σ exhibits a
specific, expected geometric structure in a vicinity of Σ.

Our first result is the following (see section 2 for definitions):

Theorem 1.1. Let (M3,g) be a Riemannian three-manifold with scalar curvature R satisfying

1
2
R⩾ Λ+ |E|2 + |B|2, (1.3)

where Λ is a non-negative constant representing the cosmological constant, and E and B are
divergence-free vector fields on M representing the electric and magnetic fields, respectively.
If Σ is an area-minimizing two-sphere embedded in (M, g), then the area, electric charge,

and magnetic charge of Σ satisfy

A⩾ 4π
(
Q2

E +Q2
M

)
.

Moreover, if equality holds, then there exists a neighborhood U∼= (−δ,δ)×Σ of Σ in M such
that:

(1) The electric and magnetic fields are normal to the foliation; more precisely,

E= aνt, B= bνt,

for some constants a and b, where ν t is the unit normal toΣt
∼= {t}×Σ along the foliation,

pointing to the outside of Σt.

1 See definition 3.2 in [13].
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(2) (U, g) is isometric to ((−δ,δ)×Σ,dt2 + g0) for some δ > 0, where the induced metric g0
on Σ has constant Gaussian curvature

κΣ = a2 + b2.

(3) The cosmological constant Λ equals zero.

Our second result is a generalization of theorem 1.1 to initial data sets that are not neces-
sarily time-symmetric. It reads as follows (see section 2 for definitions):

Theorem 1.2. Let (M3,g,K,E,B) be a three-dimensional initial data set for the Einstein–
Maxwell equations satisfying the charged DEC

µ+ J(v)⩾ Λ+ |E|2 + |B|2 − 2⟨E×B,v⟩ (1.4)

for every unit vector v ∈ TpM, every point p ∈M, and some constant Λ⩾ 0. Assume that E
and B are divergence-free and that K is two-convex.
Let Σ be a weakly outermost, spherical MOTS in (M,g,K). Then the area, electric charge,

and magnetic charge of Σ satisfy

A⩾ 4π
(
Q2

E +Q2
M

)
.

Moreover, if equality holds, then there exists an outer neighborhood U∼= [0, δ)×Σ of Σ in M
such that:

(1) The electric and magnetic fields are normal to the foliation; more precisely,

E= aνt, B= bνt,

for some constants a and b, where ν t is the unit normal toΣt
∼= {t}×Σ along the foliation,

pointing to the outside of Σt.
(2) (U, g) is isometric to ([0, δ)×Σ,dt2 + g0) for some δ > 0, where the induced metric g0 on

Σ has constant Gaussian curvature

κΣ = a2 + b2.

(3) The second fundamental form satisfies K= fdt2 on U, where f ∈ C∞(U) depends only on
t ∈ [0, δ).

(4) The energy and momentum densities satisfy

µ= a2 + b2, J= 0 on U.

(5) The cosmological constant Λ equals zero.

The norms and inner products in theorems 1.1 and 1.2 are computed with respect to the
metric g.

In section 2, we derive inequalities (1.3) and (1.4) from the DEC for the energy-momentum
tensor Tmatter.

It is worth noting that a version of theorem 1.1 remains valid when Σ is assumed to be
weakly outermost rather than area-minimizing. However, in this case, if equality holds, then
an outer neighborhood of Σ must split. This result corresponds to theorem 1.2 in the time-
symmetric setting.
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The paper is organized as follows: In section 2, we present some preliminaries necessary
for a proper understanding of this work. In section 3, we provide the proofs of theorems 1.1
and 1.2. Finally, section 4 offers a model illustrating these results.

2. Preliminaries

In this paper, we work in the C∞ category. Thus, unless otherwise stated, all manifolds, vector
fields, functions, etc are assumed to be smooth.

Let (M3,g,K) be a three-dimensional initial data set in a four-dimensional spacetime
(V4,h); that is, M is a spacelike hypersurface in (V, h) with induced metric g and second fun-
damental form K, taken with respect to the future-directed timelike unit normal toM. Assume
that (V, h) satisfies the Einstein equations with cosmological constant Λ:

G+Λh= 8π
(
TEM +Tmatter

)
,

where G= Rich− 1
2Rhh is the Einstein tensor of (V, h), TEM is the electromagnetic energy-

momentum tensor, and Tmatter is the energy-momentum tensor associated with non-
gravitational and non-electromagnetic matter fields.

The electromagnetic energy-momentum tensor TEM is given by

TEMab =
1
4π

(
FacFb

c− 1
4
FcdF

cdhab

)
,

where F is the electromagnetic 2-form, which is also referred to as the Faraday tensor. Here
Latin indices correspond to those of the spacetime coordinate system.

Let u be the future-directed timelike unit normal vector field along M. As is standard, by
the Gauss–Codazzi equations,

µ := G(u,u) =
1
2

(
R− |K|2 + τ 2

)
,

J := G(u, ·) = div(K− τg) ,

where R is the scalar curvature of (M, g) and τ = trK is the mean curvature ofM in (V, h) with
respect to u.

The electric and magnetic vector fields E and B on M are defined in such a way that

Ea = Fabu
b,

Ba =
1
2
ϵabcF

bc,

where ϵabc is the induced volume form associated with the metric g. Specifically, if ϵ̂ denotes
the volume form of the spacetimemetric h, then ϵabc = udϵ̂dabc. In the main results of this paper,
we assume the absence of charged matter, that is, we assume that divE= divB= 0.

We refer to (M,g,K,E,B) as initial data for the Einstein–Maxwell equations.
Standard calculations give that

TEM (u,u) =
1
8π

(
|E|2 + |B|2

)
,

TEM (u,v) =− 1
4π

⟨E×B,v⟩,
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for any vector v tangent to M, where (E×B)a = ϵabcEbBc defines the cross product of E and
B, which is known in the literature as the Poynting vector.

Now assume that Tmatter satisfies the DEC:

Tmatter (X,Y)⩾ 0 for all future-directed causal vectors X,Y.

Therefore,

G(u,u)+Λh(u,u) = 8π
(
TEM (u,u)+ Tmatter (u,u)

)
⩾ 8πTEM (u,u) ,

and thus

µ⩾ Λ+ |E|2 + |B|2.
In this case, if M is maximal (in particular, if M is time-symmetric), then

1
2
R⩾ Λ+ |E|2 + |B|2. (2.1)

More generally, when M is not necessarily maximal, it holds that

G(u,u+ v)+Λh(u,u+ v)⩾ 8πTEM (u,u+ v) ,

and so

µ+ J(v)⩾ Λ+ |E|2 + |B|2 − 2⟨E×B,v⟩, (2.2)

for every unit vector v tangent to M.
Inequalities (2.1) and (2.2) are commonly referred to as the charged DEC and have been

considered in numerous situations (see, e.g. [1, 8, 11, 13, 19, 21–23, 29]).
Now let Σ2 be a closed embedded surface in M3.
In this paper, we assume that Σ and M are orientable; in particular, Σ is two-sided. Then

we fix a unit normal vector field ν along Σ; if Σ separates M, by convention, we say that ν
points to the outside of Σ.

In the sequel, we are going to present some important definitions to our purposes.
The electric and magnetic charges of Σ are defined, respectively, by

QE =
1
4π

ˆ
Σ

⟨E,ν⟩, QM =
1
4π

ˆ
Σ

⟨B,ν⟩.

The null second fundamental forms χ+ and χ− of Σ in (M,g,K) are defined by

χ+ = K|Σ +A, χ− = K|Σ −A,

where A is the second fundamental form of Σ in (M, g) with respect to ν; more precisely,

A(X,Y) = g(∇Xν,Y) for X,Y ∈ X(Σ) ,

where ∇ is the Levi–Civita connection of (M, g).
The null expansion scalars or the null mean curvatures θ+ and θ− of Σ in (M,g,K) with

respect to ν are defined by

θ+ = trχ+ = trΣK+HΣ, θ− = trχ− = trΣK−HΣ,

where HΣ = trA is the mean curvature of Σ in (M, g) with respect to ν, and trΣK is the partial
trace of K on Σ. Observe that θ± = trχ±.
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After Penrose, Σ is said to be trapped if both θ+ and θ− are negative.
Restricting our attention to one side, we say that Σ is outer trapped if θ+ is negative and

marginally outer trapped if θ+ vanishes. In the latter case, we refer to Σ as a marginally outer
trapped surface or a MOTS, for short.

Assume that Σ is a MOTS in (M,g,K), with respect to a unit normal ν, that is a bound-
ary inM; more precisely, ν points towards a top-dimensional submanifoldM+ ⊂M such that
∂M+ =Σ. Then we say that Σ is outermost (resp. weakly outermost) if there is no closed
embedded surface in M+ with θ+ ≤ 0 (resp. θ+ < 0) that is homologous to and different
from Σ.

We say thatΣminimizes area inM ifΣ has the least area in its homology class inM; id est,
A(Σ)⩽A(Σ ′) for every closed embedded surfaceΣ ′ inM that is homologous toΣ. Similarly,
Σ is said to be outer area-minimizing if Σ minimizes area in M+.

An important notion that we are going to recall now is the notion of stability for MOTS
introduced by Andersson et al [5, 6].

Let Σ be a MOTS in (M,g,K) with respect to ν and t→ Σt be a variation of Σ= Σ0 in
M with variation vector field ∂

∂t |t=0 = ϕν, for some ϕ ∈ C∞(Σ). Denote by θ±(t) the null
expansion scalars of Σt with respect to the unit normal ν t, where ν = νt|t=0. It is well known
that (see [6])

∂θ+

∂t

∣∣∣
t=0

=−∆ϕ+ 2⟨X,∇ϕ⟩+
(
Q− |X|2 + divX

)
ϕ,

where ∆ and div are the Laplace and divergence operators of Σ with respect to the induced
metric, respectively; X ∈ X(Σ) is the vector field that is dual to the 1-form K(ν, ·)|Σ, and

Q= κΣ − (µ+ J(ν))− 1
2
|χ+|2.

Here κΣ represents the Gaussian curvature of Σ.
At this point, it is important to emphasize that, in the general case (i.e. when Σ is not

necessarily a MOTS), the first variation of θ+ (see, e.g. [4]) is given by

∂θ+

∂t

∣∣∣
t=0

=−∆ϕ + 2⟨X,∇ϕ⟩+
(
Q− |X|2 + divX− 1

2
θ+ + τθ+

)
ϕ.

The operator

Lϕ =−∆ϕ+ 2⟨X,∇ϕ⟩+
(
Q− |X|2 + divX

)
ϕ, ϕ ∈ C∞ (Σ) ,

is referred to as the MOTS stability operator. It can be proved that L has a real eigenvalue
λ1, called the principal eigenvalue of L, such that Reλ≥ λ1 for any complex eigenvalue λ.
Furthermore, the associated eigenfunction ϕ1, Lϕ1 = λ1ϕ1, is unique up to scale and can be
chosen to be everywhere positive.

The principal eigenvalue λ1(L) of the symmetrized operator L=−∆+Q is characterized
by the Rayleigh formula (see Lemma 1.34 and its proof in [10]):

λ1 (L) = min
u∈C∞(Σ)\{0}

´
Σ

(
|∇u|2 +Qu2

)
´
Σ
u2

. (2.3)

Furthermore, the eigenfunctions of L associated with λ1(L) are the only functions that attain
the minimum in (2.3).

6
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It was proved by Galloway and Schoen (see [16, 20]) through direct estimates, and by
Andersson et al [6] using a different method, that λ1(L)⩽ λ1(L).

We say that Σ is stable if λ1(L)⩾ 0; this is equivalent to saying that Lϕ≥ 0 for some pos-
itive function ϕ ∈ C∞(Σ). It is not difficult to see that, if Σ is weakly outermost (in particular,
if Σ is outermost), then Σ is stable.

Before concluding this section, let us recall the notion of 2-convexity. The tensor K is said
to be 2-convex if, at every point, the sum of its two smallest eigenvalues is non-negative. In par-
ticular, if K is 2-convex, then trΣK⩾ 0 along Σ. This convexity condition has been employed
by the author in related contexts [14, 15, 18, 25, 26] (see also [24]).

3. Proofs

This section is devoted to the proofs of the main results of the paper, namely theorems 1.1
and 1.2.We begin by proving theorem 1.2. The proof of theorem 1.1 follows a similar structure.

As a first step, we establish an auxiliary infinitesimal rigidity result, which plays a crucial
role in the argument.

For convenience, we define the total charge of Σ as

QT =
√
Q2

E +Q2
M.

Proposition 3.1. Let (M3,g,K,E,B) be a three-dimensional initial data set for the Einstein–
Maxwell equations satisfying the charged DEC

µ+ J(v)⩾ Λ+ |E|2 + |B|2 − 2⟨E×B,v⟩

for every unit vector v ∈ TpM, every point p ∈M, and some constant Λ⩾ 0.
Let Σ be a stable, spherical MOTS in (M,g,K). Then the area and total charge of Σ satisfy

A⩾ 4πQ2
T. (3.1)

Moreover, if equality holds, then the following conditions are satisfied:

(1) The normal components of the electric and magnetic fields along Σ are constant, say
⟨E,ν⟩= a and ⟨B,ν⟩= b.

(2) Σ is a round two-sphere with constant Gaussian curvature κΣ = a2 + b2.
(3) The constants λ1(L), λ1(L), and Λ equal zero.

Proof. Since Σ is stable and λ1(L)⩽ λ1(L), we have the following inequality for every u ∈
C∞(Σ):

0⩽ λ1 (L)
ˆ
Σ

u2 ⩽
ˆ
Σ

(
|∇u|2 +Qu2

)
.

Taking u≡ 1, we obtain

0⩽ λ1 (L)A⩽
ˆ
Σ

Q=

ˆ
Σ

(
κΣ − (µ+ J(ν))− 1

2
|χ+|2

)
⩽ 4π −

ˆ
Σ

(µ+ J(ν)) , (3.2)

where we have used the Gauss–Bonnet theorem.
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Now observe that

µ+ J(ν)⩾ Λ+ |E|2 + |B|2 − 2⟨E×B,ν⟩
⩾ |E⊤|2 + |B⊤|2 − 2⟨E⊤ ×B⊤,ν⟩+ ⟨E,ν⟩2 + ⟨B,ν⟩2, (3.3)

where E⊤ and B⊤ are the tangent components to Σ:

E⊤ = E−⟨E,ν⟩ν, B⊤ = B−⟨B,ν⟩ν.

On the other hand, it is not difficult to see that

|E⊤|2 + |B⊤|2 − 2⟨E⊤ ×B⊤,ν⟩⩾
(
|E⊤| − |B⊤|

)2 ⩾ 0. (3.4)

Using these estimates, we conclude that

0⩽ 4π −
ˆ
Σ

(
⟨E,ν⟩2 + ⟨B,ν⟩2

)
.

Applying the Cauchy–Schwarz inequality, we obtain

(4πQE)
2
=

(ˆ
Σ

⟨E,ν⟩
)2

⩽A
ˆ
Σ

⟨E,ν⟩2. (3.5)

Similarly,

(4πQM)
2 ⩽A

ˆ
Σ

⟨B,ν⟩2. (3.6)

Therefore,

0⩽A− 4π
(
Q2

E +Q2
M

)
=A− 4πQT (Σ)

2
,

proving the desired inequality.
If equality in (3.1) holds, then all inequalities above must also be equalities. In particular:

• Second equality in (3.5) implies that ⟨E,ν⟩ is constant, say ⟨E,ν⟩= a. Similarly, equality
in (3.6) gives that ⟨B,ν⟩= b is constant.

• Equalities in (3.3) and (3.4) imply

Λ = 0, µ+ J(ν) = ⟨E,ν⟩2 + ⟨B,ν⟩2 = a2 + b2.

• Equalities in (3.2) furnish that λ1(L) = 0, χ+ = 0, and u≡ 1 is an eigenfunction of L asso-
ciated with λ1(L). Therefore,

0= Q= κΣ − (µ+ J(ν)) ,

and thus

κΣ = µ+ J(ν) = a2 + b2.

Finally, since 0⩽ λ1(L)⩽ λ1(L) = 0, we conclude that λ1(L) = 0.

8
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It is worth noting that proposition 3.1 is a quasi-local statement, in the sense that it depends
only on the intrinsic and extrinsic geometric data on Σ, not on the behavior of the initial data
set in a neighborhood of the surface.

Proof of theorem 1.2. Since Σ is weakly outermost and, in particular, stable, it follows from
the infinitesimal rigidity (proposition 3.1) that

A⩾ 4πQ2
T.

Furthermore, if equality holds, then λ1(L) = 0 (and Λ = 0). Thus, an outer neighborhood U∼=
[0, δ)×Σ ofΣ inM is foliated by constant outward null mean curvature surfacesΣt

∼= {t}×Σ
(see [17, lemma 2.3]), with Σ0 =Σ and

g= ϕ2dt2 + gt on U,

where gt is the induced metric on Σt.
On Σt, we recall that

dθ
dt

=−∆ϕ + 2⟨X,∇ϕ⟩+
(
Q− |X|2 + divX− 1

2
θ2 + τθ

)
ϕ,

where θ = θ(t) is the null mean curvature of Σt with respect to νt = ϕ−1∂t.
Dividing both sides of last equation by ϕ and integrating over Σt, we obtain

θ ′
ˆ
Σt

1
ϕ
− θ

ˆ
Σt

τ =

ˆ
Σt

(
divY− |Y|2 +Q− 1

2
θ2
)
⩽
ˆ
Σt

Q

=

ˆ
Σt

(
κΣt − (µ+ J(νt))−

1
2
|χ+

t |2
)

⩽ 4π−
ˆ
Σt

(µ+ J(νt)) , (3.7)

where Y= X−∇ lnϕ.
Using the proof strategy from proposition 3.1, we have

µ+ J(νt)⩾ |E|2 + |B|2 − 2⟨E×B,νt⟩⩾ ⟨E,νt⟩2 + ⟨B,νt⟩2. (3.8)

Thus,

θ ′
ˆ
Σt

1
ϕ
− θ

ˆ
Σt

τ ⩽ 4π−
ˆ
Σt

(
⟨E,νt⟩2 + ⟨B,νt⟩2

)

⩽ 4π−

(ˆ
Σt

⟨E,νt⟩
)2

+

(ˆ
Σt

⟨B,νt⟩
)2

A(t)

= 4π

(
1− 4πQT (t)

2

A(t)

)
, (3.9)

where A(t) and QT(t) are the area and total charge of Σt, respectively.

9
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Because we are assuming 4πQT(0)2 =A(0) and divE= divB= 0 (implying QT(t) =
QT(0)), we find

θ ′
(
A(t)
4π

ˆ
Σt

1
ϕ

)
− θ

(
A(t)
4π

ˆ
Σt

τ

)
⩽A(t)− 4πQT (t)

2

=A(t)−A(0)

=

ˆ t

0

(ˆ
Σs

HΣsϕ

)
ds, (3.10)

where we have used the fundamental theorem of calculus along with the first variation of area
formula.

Since, by hypothesis, K is 2-convex, it follows that

HΣs ⩽ trΣs K+HΣs = θ (s) . (3.11)

Therefore,

θ ′ (t)

(
A(t)
4π

ˆ
Σt

1
ϕ

)
− θ (t)

(
A(t)
4π

ˆ
Σt

τ

)
⩽
ˆ t

0
θ (s)

(ˆ
Σs

ϕ

)
ds.

Since Σ is weakly outermost, we have θ(t)⩾ 0 for each t. Then, using lemma 3.2 in [25],
we conclude that θ(t) = 0, forcing all inequalities above to be equalities.

Thus:

• Equalities in (3.11) give that trΣt K= HΣt = 0 along Σt. In particular,

θ− (t) = trΣt K−HΣt = 0

for every t ∈ [0, δ).
• Equalities in (3.10) imply that all surfaces Σt have the same area as Σ: A(t) =A(0).
• Equalities in (3.8) hold, that is,

µ+ J(νt) = |E|2 + |B|2 − 2⟨E×B,νt⟩= ⟨E,νt⟩2 + ⟨B,νt⟩2 (3.12)

along Σt for every t ∈ [0, δ).
• Finally, equalities in (3.7) imply Y= X−∇ lnϕ = 0 andχ+

t = 0 alongΣt. Indeed, equalities
in (3.7), together with θ ′ = θ = 0, yield

ˆ
Σt

(
−|Y|2 +Q

)
=

ˆ
Σ

Q=

ˆ
Σt

(
κΣt − (µ+ J(νt))−

1
2
|χ+

t |2
)

= 4π −
ˆ
Σt

(µ+ J(νt)) .

The first equality implies Y = 0, and the last one gives χ+
t = 0. (Recall that

´
Σt
κΣt = 4π by

the Gauss–Bonnet theorem).

Now, taking the first variation of θ−(t) = 0, with ϕ− =−ϕ instead of ϕ, we obtain

0=
dθ−

dt
=−∆ϕ− + 2⟨X−,∇ϕ−⟩+

(
Q− − |X−|2 + divX−)ϕ−, (3.13)

10
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where X− = (K(−νt, ·)|Σt)
♯ =−X=−∇ lnϕ, and

Q− = κΣt − (µ− J(νt))−
1
2
|χ−

t |2.

Thus, dividing both sides of (3.13) by ϕ− =−ϕ and integrating over Σt, we get

0=
ˆ
Σt

(
divY− − |Y−|2 +Q−)⩽ ˆ

Σt

Q− ⩽ 4π−
ˆ
Σt

(µ− J(νt)) , (3.14)

where Y− = X− −∇ lnϕ =−2∇ lnϕ. Above we have used the Gauss–Bonnet theorem.
Observe that

µ− J(νt)⩾ |E|2 + |B|2 + 2⟨E×B,νt⟩⩾ ⟨E,νt⟩2 + ⟨B,νt⟩2. (3.15)

Therefore,

0⩽ 4π−
ˆ
Σt

(µ− J(νt))⩽ 4π−
ˆ
Σt

(
⟨E,νt⟩2 + ⟨B,νt⟩2

)
⩽ 4π

(
1− 4πQT (t)

2

A(t)

)
= 4π

(
1− A(0)

A(t)

)
= 0,

thus all inequalities above must be equalities.
Then:

• From (3.12) and equalities in (3.15), we have

|E|2 + |B|2 − 2⟨E×B,νt⟩= ⟨E,νt⟩2 + ⟨B,νt⟩2

= |E|2 + |B|2 + 2⟨E×B,νt⟩.

Therefore, ⟨E×B,νt⟩= 0 and |E|2 + |B|2 = ⟨E,νt⟩2 + ⟨B,νt⟩2. Thus, E and B are parallel to
ν t, say E= aνt and B= bνt. Furthermore, from the second equality in (3.9), we obtain that
a= a(t) and b= b(t) are constant on Σt.

• Equalities in (3.14) imply Y− =−2∇ lnϕ = 0 and χ−
t = 0 along Σt. Therefore, ϕ = ϕ(t)

is constant on Σt for each t ∈ [0, δ). In this case, after a change of variable if necessary, we
may assume that ϕ≡ 1. Moreover, χ+

t = K|Σt +At = 0 and χ−
t = K|Σt −At = 0 imply that

K|Σt = 0 and Σt is totally geodesic in (M, g). This gives that

g= dt2 + g0 on U∼= [0, δ)×Σ,

where g0 is the induced metric on Σ.
• Because divE= divB= 0, we can see that a e b are constant.
• Looking at (3.12) and equalities in (3.15) again, we get

µ+ J(νt) = a2 + b2 = µ− J(νt) .

Therefore,

µ= a2 + b2, J(νt) = 0.

11
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• It follows from (3.13) that

0= Q− = κΣt −µ ∴ κΣt = µ= a2 + b2.

• Given a unit vector v tangent to M, we are assuming that

µ+ J(v)⩾ |E|2 + |B|2 − 2⟨E×B,v⟩= a2 + b2 = µ.

Therefore, J(v)⩾ 0 for every v, that is, J= 0.
• Finally, K|Σt = 0, K(νt, ·)|Σt = X♭ = 0, and J= div(K− τg) = 0 give that K= fdt2 on U∼=
[0, δ)×Σ, where f depends only on t ∈ [0, δ).

This concludes the proof of theorem 1.2.

We now proceed with the proof of theorem 1.1. To this end, we first present the following
auxiliary result:

Proposition 3.2. Let (M3,g) be a three-dimensional Riemannian manifold whose scalar
curvature R satisfies

1
2
R⩾ Λ+ |E|2 + |B|2,

where Λ is a non-negative constant, and E and B are vector fields on M.
If Σ is a stable, minimal two-sphere embedded in (M, g), then the area and total charge of

Σ satisfy

A⩾ 4πQ2
T. (3.16)

Moreover, if equality holds, then the following conditions are satisfied:

(1) The electric and magnetic fields are parallel to ν; more precisely,

E= aν, B= bν,

for some constants a and b.
(2) Σ is a round two-sphere with constant Gaussian curvature κΣ = a2 + b2.
(3) Σ is totally geodesic, Λ = 0, and R= 2(a2 + b2) on Σ.

It is worth noting that inequality (3.16) was originally derived byGibbons [21] (see also [13,
theorem 4.4]). Our contribution lies in establishing the infinitesimal rigidity statement.

Proof. Since Σ is a stable minimal surface, the stability inequality says that (see, e.g. [10,
section 1.8])

1
2

ˆ
Σ

(
R+ |A|2

)
u2 ⩽

ˆ
Σ

|∇u|2 +
ˆ
Σ

κΣu
2

for every u ∈ C∞(Σ). Taking u≡ 1, we obtain

1
2

ˆ
Σ

R⩽ 4π, (3.17)

where we have used the Gauss–Bonnet theorem.

12
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Next, using the estimate

1
2
R⩾ Λ+ |E|2 + |B|2 ⩾ ⟨E,ν⟩2 + ⟨B,ν⟩2, (3.18)

we conclude that
ˆ
Σ

(
⟨E,ν⟩2 + ⟨B,ν⟩2

)
⩽ 4π.

Finally, applying the Cauchy–Schwarz inequality yields

(4πQT)
2
=

(ˆ
Σ

⟨E,ν⟩
)2

+

(ˆ
Σ

⟨B,ν⟩
)2

⩽A
ˆ
Σ

(
⟨E,ν⟩2 + ⟨B,ν⟩2

)
⩽ 4πA, (3.19)

which proves inequality (3.16).
Now suppose that equality holds in (3.16). Then equality must also hold in each of the steps

above.
Equality in (3.17) implies that Σ is totally geodesic and that u0 ≡ 1 is a Jacobi function on

Σ (see [10, lemma 1.34]):

∆u0 +
1
2

(
R− 2κΣ + |A|2

)
u0 = 0 on Σ.

Therefore, R= 2κΣ.
Equality in (3.18) implies Λ = 0, and that E and B are parallel to ν alongΣ, i.e. E= aν and

B= bν for some functions a,b.
Finally, second equality in (3.19) implies that ⟨E,ν⟩ and ⟨B,ν⟩ are constant, hence a and b

are constant functions.

Proof of theorem 1.1. Since Σ is area-minimizing (in particular, stable minimal), it follows
from proposition 3.2 thatA⩾ 4πQ2

T. Furthermore, if equality holds, then the Jacobi operator
of Σ reduces to −∆.

Therefore, as in the proof of theorem 1.2, by a classical argument in the literature (see, e.g.
[3, 7, 27, 28]), a neighborhood U∼= (−δ,δ)×Σ of Σ in M can be foliated by constant mean
curvature surfaces Σt

∼= {t}×Σ, with Σ0 =Σ and

g= ϕ2dt2 + gt on U.

The first variation of H(t) := HΣt gives (see, for instance, the appendix of [2])

H ′ =−∆ϕ − 1
2

(
R− 2κΣt + |At|2 +H2

)
ϕ.

Thus,

H ′
ˆ
Σt

1
ϕ
=−
ˆ
Σt

∆ϕ

ϕ
− 1

2

ˆ
Σt

(
R+ |At|2 +H2

)
+

ˆ
Σt

κΣt

⩽−
ˆ
Σt

|∇ϕ|2

ϕ2
− 1

2

ˆ
Σt

R+ 4π

⩽−1
2

ˆ
Σt

R+ 4π.
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Using the estimates

1
2
R⩾ |E|2 + |B|2 ⩾ ⟨E,νt⟩2 + ⟨B,νt⟩2,

and applying the Cauchy–Schwarz inequality, we obtain

H ′
ˆ
Σt

1
ϕ
⩽ 4π

(
1− 4πQT (t)

2

A(t)

)
.

On the other hand, 4πQT(t)2 = 4πQT(0)2 =A(0), since divE= divB= 0. Therefore,

H ′ (t)
ˆ
Σt

1
ϕ
⩽ 4π

A(t)
(A(t)−A(0)) =

4π
A(t)

ˆ t

0
H(s)

(ˆ
Σs

ϕ

)
ds,

that is,

H ′ (t)η (t)⩽
ˆ t

0
H(s)ξ (s)ds, η (t) :=

A(t)
4π

ˆ
Σt

1
ϕ
, ξ (t) :=

ˆ
Σt

ϕ,

where we have used the fundamental theorem of calculus together with the first variation of
area formula. This holds for every t ∈ (−δ,δ).

It follows directly from lemma 3.2 in [25] that H(t)⩽ 0 for every t ∈ [0, δ). Similarly, by
applying the same strategy as in the proof of lemma 3.2 in [25] for ρ(t) = 0, it is not difficult
to show that H(t)⩾ 0 for every t ∈ (−δ,0]. Therefore,

A ′ (t) =
ˆ
Σt

H(t)ϕ

{
⩽ 0 for t ∈ [0, δ) ,
⩾ 0 for t ∈ (−δ,0] .

(3.20)

In any case, A(t)⩽A(0) for every t ∈ (−δ,δ). This implies that A(t) =A(0) for all t ∈
(−δ,δ), since Σ0 =Σ is area-minimizing. Using this in (3.20), we obtain that H(t) = 0 for
every t ∈ (−δ,δ). Therefore, all inequalities above must be equalities.

Thus, eachΣt is an area-minimizing surface satisfyingA(t) = 4πQT(t)2. Then, by propos-
ition 3.2,

• E= aνt and B= bνt, where a= a(t) and b= b(t) are constant on Σt;
• EachΣt is a totally geodesic round two-sphere with constant Gaussian curvature κΣt = a2 +
b2;

• R= 2(a2 + b2) on Σt for each t ∈ (−δ,δ).

Finally, since divE= divB= 0, we conclude that a and b are constant functions. Standard
calculations guarantee theorem 1.1.

Remark 3.3. An important result in the theory of marginally outer trapped surfaces(MOTS) is
theorem 3.1 in [17], which states that if (Mn+1,g,K) is an initial data set satisfying the DEC,
µ⩾ |J|, and if Σn ⊂Mn+1 is a closed weakly outermost MOTS that does not admit a metric of
positive scalar curvature, then an outer neighborhood of Σ can be foliated by MOTS. In fact,
each leaf Σt of this foliation has vanishing outward null second fundamental form (χ+

t = 0)
and is Ricci flat. Example 4.2 in [15] shows that this result is sharp, in the sense that (M, g)
does not necessarily split as a Riemannian product in a neighborhood of Σ unless additional

14
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assumptions are made on Σ and/or on the initial data (for instance, that Σ is outer volume-
minimizing and K is n-convex; see [15, theorem 5.2]).

In our setting, although we assume that Σ2 is weakly outermost and (M3,g,K) satisfies
the CDEC (or the DEC when B= 0), we cannot a priori guarantee the existence of such a
foliation by MOTS without imposing additional conditions—for instance, that A= 4πQ2

T.
This is because, in our case, Σ admits a metric of positive scalar curvature, as we assume that
Σ is topologically a two-sphere.

4. The model

Let q> 0 and consider the dyonic Bertotti–Robinson spacetime (V4,h) defined by

V4 = R×R× S2, h= q2
(
−cosh2 rdt2 + dr2 + dθ2 + sin2 θdϕ2

)
.

Note that (V, h) is the direct product of a two-dimensional anti-de Sitter space of curvature
−1/q2 and a round two-sphere of curvature 1/q2. Consequently, one can verify that

Rich =
1
q2

diag(−htt,−hrr,hθθ,hϕϕ) .

In particular, the scalar curvature of (V, h) vanishes.
Now let qe and qm be constants and define the Faraday tensor F by

F=−qe coshrdt∧ dr+ qm sinθdθ∧ dϕ.

Adirect computation shows that the associated electromagnetic energy-momentum tensor TEM

takes the form

TEM =
1
8π

q2e + q2m
q4

diag(−htt,−hrr,hθθ,hϕϕ) .

Therefore, by choosing qe and qm such that q2 = q2e + q2m, the spacetime (V, h) satisfies the
Einstein equations with zero cosmological constant:

Rich = 8πTEM.

Observe that each t-slice M= {t}×R× S2 is time-symmetric and isometric to the
Riemannian product of a line with a round two-sphere of Gaussian curvature 1/q2.
Furthermore, the electric and magnetic vector fields on M are given by

E=
qe
q2

ν, B=
qm
q2

ν, ν :=
1
q
∂r.

The coordinates of E are

Er =
qe
q3

, Eθ = Eϕ = 0.

Thus, its divergence with respect to the induced metric g on M is

divE=
1√
detg

∂i

(√
detgEi

)
=

1
q3 sinθ

∂r (qe sinθ) = 0,

15
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since Eθ = Eϕ = 0 and qe is constant. Analogously, divB= 0.
Finally, consider the 2-sphere Σ= {t}×{r}× S2. The electric charge enclosed by Σ is

QE =
1
4π

ˆ
Σ

⟨E,ν⟩= 1
4π

qe
q2

A= qe.

Similarly, the magnetic charge is

QM = qm.

Clearly, Σ and M satisfy all the assumptions of theorems 1.1 and 1.2 with A= 4πQ2
T.

For a detailed discussion of the Bertotti–Robinson spacetime with qm = 0, as well as other
notable spacetimes in dimension D⩾ 4 with vanishing magnetic field, see [9].

5. Conclusions

In this work, we have investigated the geometric consequences of equality in the area-charge
inequalities for both time-symmetric minimal surfaces and more general marginally outer
trapped surface MOTS within the Einstein–Maxwell framework. Our results show that, under
suitable energy and curvature conditions, saturation of the inequality A⩾ 4π(Q2

E +Q2
M)

imposes strong rigidity on the local geometry: the local metric splits as a Riemannian product,
the electric and magnetic fields must be normal to the foliation, and various geometric and
physical quantities are fully determined.

These rigidity results provide a precise characterization of the local geometric and electro-
magnetic structure around weakly outermost MOTS in initial data sets satisfying the charged
DEC. In particular, they highlight the intimate connection between area-charge equality and
the underlying geometric and electromagnetic fields, offering insight into the rigidity of
extremal configurations in general relativity. In [12], in a joint work with Cruz, we extend
these rigidity phenomena to both compact and noncompact time-symmetric initial data sets,
establishing sharp area-charge inequalities and analyzing the corresponding rigidity of the
boundary and ambient geometries under suitable assumptions, including cases with different
boundary topologies.
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