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Free boundary minimal hypersurfaces outside of the ball

Laurent Mazet and Abraão Mendes

Abstract. In this paper, we obtain two classification theorems for free boundary
minimal hypersurfaces outside of the unit ball (exterior FBMH, for short) in Euclid-
ean space. The first result states that the only exterior stable FBMH with parallel
embedded regular ends are the catenoidal hypersurfaces. To achieve this, we prove
a Bôcher-type result for positive Jacobi functions on regular minimal ends in RnC1

that, after some calculations, implies the first theorem. The second theorem states
that any exterior FBMH † with one regular end is a catenoidal hypersurface. Its
proof is based on a symmetrization procedure similar to that of R. Schoen. We also
give a complete description of the catenoidal hypersurfaces, including the calculation
of their indices.

1. Introduction

Over the last few years, the study of free boundary minimal hypersurfaces (FBMH, for
short) has occupied a prominent place in differential geometry, especially the study of
FBMH in the Euclidean unit ball B � RnC1 (see, e.g., [1,2,7–9,18,19] and the references
therein).

In this paper, we deal with FBMH in RnC1nB with compact boundary in @B, which
are called exterior free boundary minimal hypersurfaces. These hypersurfaces are critical
for the n-volume functional with respect to deformations that let the boundary on the unit
sphere. For such critical points, the second order derivative of the volume functional is
given by the so-called stability operator that, here, has a contribution from the boundary. In
our situation, this contribution is nonnegative due to the concavity of the unit sphere with
respect to its outside. An interesting question would be to understand the geometry and the
topology of these hypersurfaces in terms of their indices. In the ball, this is the study made
by L. Ambrozio, A. Carlotto, and B. Sharp in [2]. A situation where non-compact FBMH
have been studied is the case of Schwarzschild space: R. Montezuma [14] and E. Barbosa
and J. M. Espinar [3] have looked at some properties of these hypersurfaces. One can also
take a look at the work of H. Hong and A. Saturnino [12].

In RnC1 n B, important examples of exterior FBMH are the catenoidal hypersurfaces,
defined as exterior FBMH invariant by isometries fixing a straight line. In Section 4, we
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give a complete description of the catenoidal hypersurfaces and calculate their indices:
some of them have index 0 and others have index 1.

The aim of this paper is to prove two classification results for catenoidal hypersurfaces.
The first classification theorem is the following. Definitions are given in Sections 2 and 3.

Theorem 1.1. Let † be an exterior free boundary minimal hypersurface in RnC1n B.
Let us assume that † is stable and has parallel regular ends. Then † is a catenoidal
hypersurface.

In order to prove Theorem 1.1, we first prove that saying that † is stable is equivalent
to saying that there exists a positive Jacobi function u on† satisfying the Robin boundary
condition @�uC uD 0 on @†. This is the content of Proposition 2.1. Its proof is based on
the proof of a classical stability characterization due to D. Fischer-Colbrie and R. Schoen
(Theorem 1 in [6]) for manifolds without boundary where, here, we make use of the
Harnack inequality for positive solutions to �u C qu D 0 on † with Robin boundary
condition @�uC u D 0 on @† proved in Appendix A. Second, we obtain a Bôcher-type
theorem for positive Jacobi functions on regular minimal ends in RnC1 that, together with
Proposition 2.1, implies that † is invariant by isometries fixing a straight line, in other
words, † is a catenoidal hypersurface.

As mentioned above, some of the catenoidal hypersurfaces have index 1, so it would
be interesting to know if the index equal to 1 implies that the hypersurface is catenoidal.
When n D 2, this would be a result similar to the López–Ros result [13] for boundaryless
minimal surfaces. For example, it would be interesting to understand if a control on the
index gives a control on the number of ends of the hypersurface. However, the positive
contribution of the boundary to the stability operator seems to make this not an easy task.

The second classification theorem is the following.

Theorem 1.2. Let † be an exterior free boundary minimal hypersurface. If † has one
regular end, then † is a catenoidal hypersurface.

The proof of Theorem 1.2 is based on a reflection procedure as in Schoen’s paper [16].
After submitting the paper, it was brought to our attention that some versions of Theo-
rem 1.2 were stated under different hypotheses by S.-H. Park and J. Pyo, see Theorems 3.1
and 3.2 in [15]. In fact, they proved that the conclusion of Theorem 1.2 holds for capillary
(† meets @B at a constant contact angle) embedded exterior minimal hypersurfaces lying
in a half-space. Assuming that † is free boundary and still embedded, they were able to
drop the half-space condition. Here, we remove the embeddedness assumption. The tech-
nique of proof is similar to the one in [15]. However, let us notice that there is an omission
in the argument of Park and Pyo; so we decide to keep our version of the result completing
the argument (the omission is made explicit in the proof).

The paper is organized as follows. In Section 2, we present some preliminaries on
FBMH and prove Proposition 2.1. In Section 3, we state and prove an auxiliary Bôcher-
type result (Theorem 3.1) and present the proof of Theorem 1.1. In Section 4, we introduce
the catenoidal hypersurfaces and give a complete description of them, including the cal-
culation of their indices. In Section 5, we prove Theorem 1.2. Finally, in Appendix A, we
present a proof of the Harnack inequality for positive functions satisfying a Robin-type
boundary condition.
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2. Free boundary minimal hypersurfaces in RnC1 n B

Let † be an n-manifold with compact boundary. We say that F W† ! RnC1 n B is an
exterior proper immersion if F is a proper immersion and F.†/ \ @B D F.@†/. In this
paper, we always consider such exterior proper immersions. We also assume that† is ori-
entable so that a unit normal N is well defined along F . Besides, we will often identify †
with its image F.†/ and just say that † is an exterior hypersurface.

We will consider exterior hypersurfaces that are critical for the n-volume functional
with respect to any deformations keeping the boundary on @B. Such a hypersurface † has
vanishing mean curvature and meets @B orthogonally: we call them exterior free boundary
minimal hypersurfaces.

Basic examples are given by cones over minimal hypersurfaces S � Sn D @B:

† D ¹tp 2 RnC1 Ip 2 S and t � 1º:

One can also consider exterior FBMH that are invariant by isometries fixing a straight line:
they are called catenoidal hypersurfaces. Their complete description is given in Section 4.

Let† be an exterior free boundary minimal hypersurface. The free boundary condition
implies that, at P 2 @†, the outgoing unit normal �.P / D �P is a principal direction of
the second fundamental form B of †. Indeed, for T 2 T @†, we have

B.�; T / D .DT �;N / D �B@B.T;N / D �.T;N / D 0;(2.1)

where D is the covariant derivative in RnC1 and B@B is the second fundamental form
of @B. Moreover, if S; T 2 T @†, one has

(2.2) B.S; T / D .DT S;N / D .r
S
T S C B@B.S; T /�;N / D .r

S
T S;N / D B

S
@†.S; T /;

where rS is the Levi-Civita connection of Sn and BS
@†

denotes the second fundamental
form of @† as a submanifold of Sn.

Figure 1. Exterior FBMH.

As in the boundaryless case, we also have a monotonicity formula for exterior free
boundary minimal hypersurfaces:

j† \ BRj

Rn
�

�
1 �

1

Rn

�
j@†j

n
D

Z
†\BR

jX?j2

jX jnC2
;(2.3)
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where BR is the Euclidean ball centered at the origin of radius R � 1. In fact, let

v.r/ D j† \ Br j; r > 1:

It follows from the coarea formula that

d

dr
v.r/ D

Z
†\@Br

1

jr†d j
;

where d.X/ D jX j is the distance function to the origin. On the other hand, because † is
minimal, div†.X>/ D n. Therefore,

nv.r/ D

Z
†\Br

div†.X>/ D
Z
@†

.X>; �/C

Z
†\@Br

.X>; �/ D �j@†j C

Z
†\@Br

jX>j:

This gives

d

dr

�v.r/
rn

�
D
j@†j

rnC1
C

Z
†\@Br

1

rn

� 1

jr†d j
�
jX>j

r

�
D
j@†j

rnC1
C

Z
†\@Br

1

jr†d j

�
jX?j2

rnC2

�
;

where above we have used that r†d D X>=jX j and jX?j2 D r2 � jX>j2. Thus, inte-
grating last equation from 1 to R and using the coarea formula, we obtain (2.3).

2.1. The stability operator

Let ¹Ftº be a family of exterior proper immersions of † such that F0.†/ is free bound-
ary minimal and @tFt has compact support. Even if the volume of Ft .†/ is infinite, its
derivatives can be computed, since the deformation has compact support. Then the first
derivative of the n-volume functional vanishes at t D 0, and the second derivative at t D 0
can be computed in terms of the function u D .@tFt jtD0; N / by

d2

dt2
Vol.Ft .†//

ˇ̌̌
tD0
D Q.u; u/ D

Z
†

.jr†uj2 � kBk2u2/ d�C

Z
@†

u2 ds;

wherer† and d� are the gradient and the n-volume measure on†, respectively, and ds is
the .n� 1/-volume measure on @†, all with respect to the metric induced by F0 (see [2]).
After integration by parts, one has

Q.u; u/ D �

Z
†

u.�uC kBk2u/ d�C

Z
@†

u.uC @�u/ ds:

So the quadratic form Q is associated with the Jacobi operator defined by Lu D �uC

kBk2u. Then, for any bounded domain � in †, we can consider the associated spectrum
of L: a sequence of eigenvalues �n % C1 and a L2-orthonormal sequence of func-
tions un on � such that8̂<̂

:
�un C kBk

2un D ��nun on �;
@�un C un D 0 on @† \�;
un D 0 on @� n @†:
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The number of negative eigenvalues is then called the index of Q on �, and is denoted by
Ind.Q;�/. If .�n/ is an increasing sequence of domains such that [�n D †, then the
limit of the increasing sequence .Ind.Q;�n// is called the index of †, and is denoted by
Ind.†/.

When Ind.†/D 0, we say that† is stable and this is equivalent toQ.u;u/� 0 for any
function u with compact support on †. Actually, we have an alternative characterization
of stability given by the following Fischer-Colbrie and Schoen-type result (also stated in
Proposition 4.1 of [12]).

Proposition 2.1. Let † be an exterior free boundary minimal hypersurface. Then † is
stable if and only if there exists a positive solution u on † to

(2.4)

´
�uC kBk2u D 0 on †;
@�uC u D 0 on @†:

Proof. The proof is very similar to that of Theorem 1 in [6] by Fischer-Colbrie and
Schoen, where they prove the equivalence between three statements analogous to the fol-
lowing:

(i) on any bounded domain, L has nonnegative first eigenvalue;
(ii) on any bounded domain, L has positive first eigenvalue;
(iii) there exists a positive solution to (2.4).

In fact, in order to adapt their proof, we just need to observe that, if u > 0 is as in (2.4),
then @� lnu D �1 on @† (this is for the part (iii) H) (i)) and use the Harnack inequality
given in Proposition A.2 in Appendix A (for the part (ii) H) (iii)).

When n D 2, Fischer-Colbrie’s result (Theorem 2 in [5]) gives that an exterior free
boundary minimal surface † has finite index if and only if it has finite total curvature (see
also Theorem 1.4 in [12]). One difference is that, in our case, the quadratic form Q does
not depend only on the Gauss map, but also on the conformal factor along the bound-
ary @†. A second important point is that we assume @† to be compact. For example, if †
is stable, we have a solution u to (2.4) which can be lifted to the universal cover z†. This
implies that the associated quadratic form on z† is nonnegative. However, the universal
cover may not have finite total curvature, as we are going to see below (see Example 4.2).
Actually, the universal cover is not properly immersed (the boundary is not compact) and
thus it is not an exterior surface according to our definition.

2.2. Regular ends

The asymptotic of an exterior free boundary minimal hypersurface can be highly compli-
cated. A simple asymptotic is given by regular ends introduced by Schoen in [16].

In order to describe it, we split P 2 RnC1 as .X; z/ 2 Rn � R. Then an end E of an
exterior free boundary minimal hypersurface is said to be regular if, after an isometry,
a representative of E is given by the graph of a function f of bounded gradient defined
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on ¹jX j � Rº with the following asymptotic:

f .X/ D A ln jX j C B C .C;X/ jX j�2 CO.jX j�2/ if n D 2;(2.5)

f .X/ D B C A jX j�.n�2/ C .C;X/ jX j�n CO.jX j�n/ if n > 2;(2.6)

where A; B 2 R and C 2 Rn. We notice that the above estimate on f implies similar
estimates on its derivatives (see [16]). For example, one sees that rf .X/ goes to 0 as jX j
goes toC1 and, in particular, there is a well-defined unit normal at1 for such an end.

In the above asymptotics, if A D 0, we say that the end is planar.
If nD 2 and† has finite total curvature, then† is conformally equivalent to a compact

Riemann surface with boundary minus a finite number of points. Moreover, a properly
embedded annular end with finite total curvature is regular, see Proposition 1 in [16].

In the case 3� n� 6, following the arguments of J. Tysk [21], if we assume that† has
finite index and finite volume growth in the sense that limR!C1 R

�nj† \ BRj < C1,
then † has finitely many ends, all of them being regular.

3. Stable hypersurfaces

3.1. A Bôcher-type result for the Jacobi operator

In this section, we analyze the asymptotic behavior of positive Jacobi functions (i.e., solu-
tions to Lu D 0) on regular ends.

Theorem 3.1. Let E be a regular minimal end in RnC1, with X 2 Rn denoting a coordi-
nate associated to the end as in (2.5) and (2.6), and consider a positive Jacobi function u
on E. Then u has the following asymptotic: there exist A;B 2 R such that

u.X/ D A ln jX j C B C v.X/ if n D 2;

u.X/ D AC BjX j�.n�2/ C v.X/ if n > 2;

where v is such that the function jX jn�1v is C 2-bounded on Rn n BR. Moreover, either
A > 0 or A D 0 and B > 0.

Proof. Writing X D etp with t 2 R and p 2 Sn�1, a regular end can be parametrized
by Œt0;C1/ � Sn�1 with a metric g having the asymptotic g D e2t .ı CO.e�2.n�1/t //,
where ı is the product metric on R � Sn�1. Moreover, the second fundamental form can
be estimated by kBk2 D O.e�2nt /. Thus the Jacobi operator can be computed as

�uC kBk2u D e�2t
�
ut t C .n � 2/ut C�

�uCM.u/
�
;

where �� is the Laplacian on Sn�1 and M.u/ is a second order linear operator whose
coefficients have C 0;˛-norm bounded by Ce�2.n�1/t for some constant C > 0.

Therefore a Jacobi function u satisfies

(3.1) ut t C .n � 2/ut C�
�uCM.u/ D 0;

which is a uniformly elliptic equation on Œt0;C1/ � Sn�1.



Free boundary minimal hypersurfaces outside of the ball 283

As a consequence, by the Harnack inequality ([10], Corollary 8.21), there is a constant
C > 0 such that, for any p; q 2 Sn�1 and t; s � t0 C 1 with jt � sj � 1, and any positive
Jacobi function u, we have

u.t; p/ � Cu.s; q/:

By Schauder’s elliptic estimates ([10], Corollary 6.3), we also have

(3.2) kukC 2;˛.Œt�1=2; tC1=2��Sn�1/ � CkukC 0.Œt�1; tC1��Sn�1/ for t � t0 C 2:

Let us define
Nu.t/ D

1

jSn�1j

Z
Sn�1

u.t; p/ d�:

By Harnack’s inequality, we obtain

(3.3) kukC 0.Œt�1; tC1��Sn�1/ � C min
p2Sn�1

u.t; p/ � C Nu.t/:

Then, combining with (3.2), there is a constant C > 0 such that

(3.4) kM.u/kC 0;˛.Œt�1=2; tC1=2��Sn�1/ � Ce
�2.n�1/t

Nu.t/

and
M.u/.t/ D

1

jSn�1j

Z
Sn�1

M.u/.t; p/ d�

satisfies

(3.5) kM.u/kC 0;˛.Œt�1=2; tC1=2�/ � Ce
�2.n�1/t

Nu.t/:

By integrating (3.1) over Sn�1, we obtain that Nu solves

Nut t C .n � 2/ Nut CM.u/ D 0:

Considering first the case n > 2, let a and b be two functions such that�
Nu

Nu0

�
D a

�
1

0

�
C b

�
1

2 � n

�
:

Then we have the system8̂<̂
: a0 D �

1

n � 2
M.u/.t/;

b0 D �.n � 2/b C
1

n � 2
M.u/.t/:

Using the above equations, we obtain

@t
p
a2 C b2 � C jM.u/.t/j � Ce�2.n�1/t Nu.t/ � Ce�2.n�1/t

p
a2 C b2:

Thus
p
a2 C b2 and Nu stay bounded on Œt0;C1/. In particular,

jM.u/.t/j � Ce�2.n�1/t :
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Also,

@t
�
ent
p
a2 C b2

�
� nent

p
a2 C b2 � .n � 2/ ent

b2
p
a2 C b2

� Ce�.n�2/t
p
a2 C b2

� .2 � Ce�2.n�1/t / ent
p
a2 C b2 � 0

for t sufficiently large. Therefore ent
p
a2 C b2 cannot converge to 0 at t goes toC1. We

can also solve the system to obtain8̂̂<̂
:̂
a D AC

Z C1
t

1

n � 2
M.u/.s/ ds;

b D Be�.n�2/t � e�.n�2/t
Z C1
t

1

n � 2
e.n�2/sM.u/.s/ ds:

We notice that if A D B D 0, then limt!C1 e
nta D limt!C1 e

ntb D 0, which is not
possible. Therefore we can be sure that either A or B is nonzero. As NuD aC b is positive
and A D limt!C1.aC b/, then either A > 0 or A D 0 and B > 0. Observe that

Nu � A � Be�.n�2/t D O.e�2.n�1/t /:

If n D 2, we notice that

@t

q
Nu2 C Nu2t �

Nu Nutp
Nu2 C Nu2t

C C jM.u/j �
1

2

q
Nu2 C Nu2t C Ce

�2t
Nu

�

�1
2
C Ce�2t

�q
Nu2 C Nu2t :

Thus Nu D O.e
1
2 t / and then M.u/ D O.e�

3
2 t /. We also have

@t

�
e
3
4 t

q
Nu2 C Nu2t

�
�

�3
4
�
1

2
� Ce�2t

�
e
3
4 t

q
Nu2 C Nu2t � 0

for t sufficiently large. So e
3
4 t
p
Nu2 C Nu2t cannot converge to 0 as t goes to C1. By inte-

grating the equation on Nu, one gets

Nu.t/ D At C B �

Z C1
t

� Z C1
s

M.u/.r/ dr
�
ds:

If A and B vanish, then Nu; Nut D O.e�
3
2 t /, which is not possible. Then either A > 0 or

A D 0 and B > 0. Notice that Nu � At � B D O.te�2t /. In fact, last equation gives that
Nu D O.t/. Then, from (3.5), we have M.u/ D O.te�2t /. Therefore, using last equation
again, we obtain Nu � At � B D O.te�2t /.

In both cases, we have M.u/ D O.te�2.n�1/t /.
Now, to conclude, we need to estimate u� Nu. Let vi be aL2-unit eigenfunction for the

Laplace operator on Sn�1 associated to a nonzero eigenvalue � (in particular, � � n� 1).
Let ui D

R
Sn�1 uvi d� . Equation (3.1) implies

ui t t C .n � 2/ui t � �ui D �

Z
Sn�1

M.u/vi d� D fi D O.te
�2.n�1/t /:
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Observe that �2 C .n � 2/� � � D 0 has two roots: �C � 1 and �� � �.n � 1/. Then,
solving the above equation, we obtain

ui .t/ D e
�C t

�
ai �

Z C1
t

e��Cs
fi .s/

�C � ��
ds
�

(3.6)

C e�� t
�
bi �

Z t

t0

e���s
fi .s/

�C � ��
ds
�

for some ai ; bi 2 R. Using (3.3) and the fact that Nu D O.t/, we have ui D O.t/ and thus
ai D 0. We also have

bi D e
���t0 ui .t0/C e

.�C���/t0

Z C1
t0

e��Cs
fi .s/

�C � ��
ds:

Now, by Cauchy–Schwarz,� Z C1
t

e��Cs fi .s/ ds
�2
�

1

�C
e��Ct

Z C1
t

e��Cs f 2i .s/ ds;� Z t

t0

e���s fi .s/ ds
�2
�

1

���
.e���t � e���t0/

Z t

t0

e���s f 2i .s/ ds:

Thus, by squaring (3.6), we obtain

u2i .t/ � 16

�
e�Ct

�C.�C � ��/2

Z C1
t

e��Csf 2i .s/ ds C e
2��.t�t0/ u2i .t0/

C
e2��.t�t0/C�Ct0

�C.�C � ��/2

Z C1
t0

e��Csf 2i .s/ ds C
e��t

���.�C � ��/2

Z t

t0

e���sf 2i .s/ ds

�
:

Let us define

zU.t/ D

Z
Sn�1

.u.t; p/ � Nu.t//2 d�;

zM.t/ D

Z
Sn�1

.M.u/.t; p/ �M.u/.t//2 d�:

Using that �C � 1 and �� � �.n � 1/, we can sum the above inequalities with respect
to i to obtain

zU.t/ � 16

�
e�Ct

Z C1
t

e��Cs zM.s/ ds C e2��.t�t0/ zU.t0/

C e2��.t�t0/C�Ct0
Z C1
t0

e��Cs zM.s/ ds C e��t
Z t

t0

e���s zM.s/ ds

�
:

Since zM.t/ D O.t2e�4.n�1/t /, it follows that

ku � NukL2.Œt�1; tC2��Sn�1/ D O.e
�.n�1/t /:
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Actually, u � Nu solves the equation

zt t C .n � 2/zt C�
�z CM.z/ DM.u/ �M. Nu/:

Then, combining the above L2-estimate with (3.4) and (3.5), Schauder’s estimates give

ku � NukC 2.Œt; tC1��Sn�1/ D O.e
�.n�1/t /:

We have then proved that

ku � A � Be�.n�2/tkC 2.Œt; tC1��Sn�1/ D O.e
�.n�1/t / if n > 2;

ku � At � BkC 2.Œt; tC1��Sn�1/ D O.e
�t / if n D 2:

This gives the expected result after going back to the original coordinate system.

3.2. Classification of stable hypersurfaces

If † is an exterior free boundary minimal hypersurface with regular ends, the unit normal
to† has a well-defined limit at each end. Then we say that such a hypersurface has parallel
ends if these limits coincide up to a sign. We notice that, if † is embedded, then its ends
are always parallel.

Now, we are going to use the above Bôcher-type theorem in order to give a classifica-
tion of stable exterior FBMH with parallel regular ends.

Proof of Theorem 1.1. Consider the .X;z/ coordinate system on RnC1. After an isometry,
we can assume that the unit normal to the ends of † are given by˙ez .

Now, letM 2Mn.R/ be a skew-symmetric matrix and consider the Killing vector field
K.X; z/ D MX . Notice that K generates isometries fixing the z-axis (we have exp.tM/

orthogonal). Then the scalar product uD .K;N / is a solution to�uC kBk2uD 0 on†.
Moreover, since K is tangent to @B, u satisfies @�uC u D 0 on @†.

Each end of † can be parametrized by the graph of a function f with the asymptotic
given by (2.5) or (2.6) (depending on n). In particular,

N.X; f .X// D ˙
1p

1C jrf .X/j2
.�rf .X/C ez/:

So the asymptotic of f gives that u D O.jX j�.n�1//.
On the other hand, since† is stable, there is a positive solution v to (2.4). The asymp-

totic of v is given by Theorem 3.1. As a consequence, we see that u.X/=v.X/ goes to 0
as jX j goes toC1. Also, the function w D u=v satisfies´

�w C 2.r ln v;rw/ D 0 on †;
@�w D 0 on @†:

Therefore, the maximum principle gives that w D u=v is constant and thus equals zero.
This implies that u D 0 and then † is invariant by the isometries generated by K. So † is
a catenoidal hypersurface.
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4. Catenoidal hypersurfaces

Theorem 1.1 gives that stable hypersurfaces are invariant by isometries fixing an axis. In
this section, we describe this kind of exterior free boundary minimal hypersurfaces†. We
fix the axis to be Rez .

Let � be a primitive of the function r 7! .r2.n�1/ � 1/�1=2 defined on Œ1;C1/. The
hypersurface

† D ¹.X; z/ 2 Rn �R I jX j � 1 and z2 D �2.jX j/º

is a minimal hypersurface invariant by isometries fixing Rez . Actually, any connected
piece of a minimal hypersurface invariant by isometries fixing Rez is a subset of �†C�ez
for some �;� 2 R.

Half of † can be parametrized by the map

F W Œ1;C1/ � Sn�1 ! RnC1

.r; p/ 7! .rp; �.r//:

Given ˛ 2 .0; �=2/, we look for a rotational exterior free boundary minimal hyper-
surface with boundary in ¹z D sin ˛º. Let R˛ D .sin ˛/�1=.n�1/ be such that �0.R˛/ D
tan ˛. Notice that R˛ decreases with ˛ from C1 to 1. Let C˛ be the hypersurface
parametrized by

(4.1)
F˛ W ŒR˛;C1/ � Sn�1 ! RnC1

.r; p/ 7! �˛.rp; �.r//C �˛ ez ;

where �˛ and �˛ are chosen such that C˛ has the expected boundary:

(4.2)

´
�˛ D R

�1
˛ cos˛ D .sin˛/

1
n�1 cos˛;

�˛ D sin˛ � �˛ �.R˛/:

The hypersurface C˛ has free boundary because of the choice of R˛ . Thus, for any ˛ 2
Œ0; �=2/, there is exactly one rotational exterior free boundary minimal hypersurface: C˛
for ˛ ¤ 0 and C0 D ¹z D 0º n B for ˛ D 0.

Let us notice that the unit normal to C˛ is given by

(4.3) N.r; p/ D
1p

1C .�0.r//2
.��0.r/p; 1/:

Therefore, C˛ is an exterior free boundary minimal catenoidal hypersurface and any con-
nected exterior free boundary minimal catenoidal hypersurface is the image of some C˛
by a linear isometry of RnC1.

Observe that

(4.4) @˛�˛ D .sin˛/�
n�2
n�1

� 1

n � 1
cos2 ˛ � sin2 ˛

�
:

Let
˛n D arctan

� 1
p
n � 1

�
:

It follows that, on Œ0; ˛n�, �˛ is increasing from 0 to �˛n and, on Œ˛n; �=2/, �˛ is decreas-
ing up to 0. Moreover, C˛ converges to the hyperplane ¹z D 1º as ˛ goes to �=2.
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Figure 2. Catenoidal hypersurface C˛ , ˛ � 0:92

The stability properties of C˛ are described by the following result, whose proof
is inspired by the computation of the index of catenoids in RnC1 by L.-F. Tam and
D. Zhou [20].

Proposition 4.1. There exists N̨n 2 Œ˛n;�=2/ such that C˛ is stable for ˛ 2 Œ0; N̨n� and C˛
has index 1 for ˛ 2 . N̨n; �=2/.

Actually, N̨2 D ˛2 D �=4 and N̨n > ˛n for n > 2.

Proof. We first study some preliminary stability properties of C˛ . Notice that C˛ is a
graph over part of Rn. Therefore, C˛ is stable as a graph with fixed boundary: the stability
operator is nonnegative for any test functions that vanish on @C˛ .

Let us consider on Rn coordinates .x; Y / 2 R � Rn�1. Let K.x; Y; z/ D .�z; 0; x/
be the Killing vector field generating rotations around ¹x D 0; z D 0º in RnC1. Then the
scalar product k D .K; N / defines on C˛ a solution to (2.4). The boundary condition
comes from the fact that K is tangent to @B. Actually, one can compute k in the .r; p/
coordinates. By (4.1) and (4.3), we have

k D
1p

1C .�0.r//2

�
.�˛ �.r/C �˛/ �

0.r/C �˛r
�
px ;

where px is the x coordinate of p 2 Sn�1 � R �Rn�1. Observe that, by (4.2),

.�˛ �.r/C �˛/ �
0.r/C �˛r � .�˛ �.R˛/C �˛/ �

0.r/C �˛R˛

D sin˛ �0.r/C cos˛ > 0:

Hence k has constant sign when px has constant sign. This implies that the half catenoidal
hypersurfaces C˛ \ ¹˙x � 0º are stable.

Let us now study the global stability of C˛ . We have a one-parameter family ¹C˛º of
catenoidal hypersurfaces. Therefore the derivative with respect to ˛ gives a deformation
field whose scalar product with the unit normal to C˛ is a function u that solves (2.4). In
the F˛ parametrization and for the upward pointing unit normal, u can be computed as

u D
1p

1C �0.r/2
.�@˛�˛ r �

0.r/C @˛�˛ �.r/C @˛�˛/:
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So u depends only on r and is equal to 1 on @C˛ , i.e., at r D R˛ . In order to study the sign
of u close to r D C1, let us take a look at �˛ . By (4.4), we have

@2˛�˛ D �
cos˛ .sin˛/�

2n�3
n�1

�
.n2 C n � 2/ sin2 ˛ C .n � 2/ cos2 ˛

�
.n � 1/2

� 0:

Thus @˛�˛ is decreasing.
If n D 2, we have limr!C1 �.r/ D C1. Then, for ˛ ¤ ˛2 D �=4, we have that

limr!C1 uD˙1 depending on sign.@˛�˛/: close to r DC1, u is positive for ˛ < ˛2
and negative for ˛ > ˛2.

If n > 2, we have limr!C1 �.r/ < C1 and, by (4.2),

lim
r!C1

u D @˛�˛ C @˛�˛ lim
r!C1

�.r/

D
n

n � 1
cos˛ C @˛�˛

�
lim

r!C1
�.r/ � �.R˛/

�
:

This limit is positive when ˛ � ˛n. Moreover, when ˛ � ˛n, the limit is decreasing with ˛
and negative for ˛ close to �=2. Then there exists N̨n > ˛n such that the limit is positive
for ˛ < N̨n and negative for ˛ > N̨n.

Thus, for ˛ < N̨n, u is positive on @C˛ and close to the infinity. Therefore, if u changes
sign on C˛ , ¹u < 0º would be a precompact subdomain of C˛ with uD 0 on its boundary,
but this would contradict the stability of C˛ as a graph. Hence, for ˛ < N̨n, u is positive
and then, by Proposition 2.1, C˛ is stable. The hypersurface C N̨n is also stable as limit of
stable minimal hypersurfaces.

When ˛ > N̨n, u changes sign on C˛ . Thus there is A > R˛ such that u is nonnegative
on ŒR˛; A� � Sn�1 and vanishes on ¹Aº � Sn�1. This implies that C˛ has index at least 1.
We notice that there is no value B > A such that u vanishes on ¹Bº � Sn�1. Indeed, this
would contradict that ŒA;C1/ � Sn�1 is stable as a graph.

Let us now prove that, for ˛ > N̨n, C˛ has index 1. If it is not the case, then there
is B > R˛ such that the Jacobi operator has index at least 2 on ŒR˛; B� � Sn�1. Let us
consider u2 the eigenfunction associated to the second eigenvalue �2 < 0 on C˛.B/ D

F˛.ŒR˛; B� � Sn�1/: u2 is a solution to8̂<̂
:
�u2 C kBk

2u2 D ��2u2 on C˛.B/;

@�u2 C u2 D 0 on @C˛;
u2 D 0 on r D B:

We are going to prove that u2 depends only on the r variable. As above, let us consider
.x; Y / coordinates on Rn and let S be the symmetry of RnC1 with respect to ¹x D 0º.
As C˛.B/ is invariant by S , we can consider on it the function v defined by

v.p/ D u2.p/ � u2.S.p//:

The function v is then a solution to8̂<̂
:
�v C kBk2v D ��2v on C˛.B/;

@�v C v D 0 on @C˛;
v D 0 on r D B:
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Moreover, we have vD 0 on C˛.B/\ ¹xD 0º. If v¤ 0, this implies that C˛.B/\ ¹x � 0º

is unstable, since �2 < 0, which contradicts the stability of C˛ \ ¹x � 0º. So v � 0 and u2
is invariant by S . Changing the choice of the x coordinate, we obtain that u2 is invariant
by isometries fixing the z-axis and then depends only on r .

As u2 is associated to the second eigenvalue, u2 must change sign. Then there is C 2
.R˛;B/ such that u2D 0 on ¹r DC º. As �2 <0, this implies that ¹C � r �Bº is unstable,
which contradicts the stability of C˛ as a graph. Hence C˛ has index 1 for ˛ > N̨n.

Example 4.2. Consider the universal cover of C˛ for n D 2:

F˛ W ŒR˛;C1/ �R ! C˛ � R3

.r; �/ 7! �˛.r cos �; r sin �; �.r//C �˛ ez :

Straightforward computations give that the area element and the Gaussian curvature of F˛
are given by

d�˛ D �
2
˛ r.1C .�

0/2/1=2 drd� and K˛ D
�0�00

�2˛ r.1C .�
0/2/2

�

Therefore,

K˛ d�˛ D
�0�00

.1C .�0/2/3=2
drd� D �

drd�

r2
p
r2 � 1

�

Thus the total curvature of C˛ is given by

2

Z 2�

0

� Z C1
R˛

dr

r2
p
r2 � 1

�
d� D 4�

Z C1
R˛

dr

r2
p
r2 � 1

D 4�.1 � cos˛/;

while the total curvature of its universal cover is infinite. For ˛ � �=4, this example shows
that when the boundary is not compact, even if the stability operator is nonnegative, the
total curvature can be infinite.

5. Classification of one-ended examples

This section is devoted to the proof of Theorem 1.2. The idea of the proof is based on a
symmetrization procedure as in Schoen’s paper [16].

After a rotation, we can assume that the end of † is the graph of a function f over the
outside of a compact set with the following asymptotic:

f .X/ D A ln jX j C B CO.jX j�1/ if n D 2;

with A � 0 and, if A D 0, B � 0, and

f .X/ D B C AjX j�.n�2/ CO.jX j�.n�1// if n > 2;

with B � 0.
The first step consists in proving that either † D ¹z D 0º n B D C0 or † � ¹z > "º

for some " > 0.
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Observe that @†� ¹z ��2º and† nK � ¹z ��2º for some compact setK �RnC1.
Then, by the maximum principle,†� ¹z ��2º. In fact, for each t < 0, we have† nK �
¹z � tº (for a possibly different compact set K). Therefore, if † \ ¹z < 0º ¤ ¿, we can
start from t D �2 and let t < 0 increase up to finding a first contact point in †\ ¹z D t0º
for some t0 < 0. We notice that, since † is free boundary, @�z D �.P; ez/ at a boundary
point P . So the first contact point cannot be at @† (indeed, in that case, we would have
@�z � 0 at that first contact point). Then the maximum principle can be applied at the first
contact point in order to guarantee that † D ¹z D t0º n B, which is not free boundary.

This shows that † � ¹z � 0º. Then either @† � ¹z > 0º or @† has a point in ¹z D 0º
and the boundary maximum principle can be applied so that † D ¹z D 0º n B.

If @† � ¹z > 0º, then we see that

�

Z
@†

@�z D

Z
@†

.P; ez/ > 0:

Since z is harmonic on †, using the asymptotic of f , we obtain that

0 < �

Z
@†

@�z D

Z
†\¹jX jDRº

@�z D

Z
†\¹jX jDRº

.�; ez/

D

Z
Sn�1

�
� .n � 2/A

1

Rn�1
Rn�1 CO.R�1/

�
d� D �.n � 2/ jSn�1jAC o.1/

for n > 2. The same estimate gives that 0 < 2�AC o.1/ for n D 2. Therefore, if n D 2,
we have A > 0 and this implies that f .X/ > 1 for jX j sufficiently large. If n > 2, we have
A < 0 and, since f � 0, this implies that B > 0 and f .X/ > B=2 for jX j sufficiently
large. In any case, we obtain that † � ¹z � "º for small positive ", since there cannot be
any first contact point with ¹z D tº for 0 � t � ". This finishes the first step.

We fix a .x;Y / coordinate system in RnDR�Rn�1. We want to prove that† is sym-
metric with respect to ¹xD 0º. In order to do this, we are going to follow a symmetrization
procedure.

Given � 2 Œ0;�=2�, let…� be the hyperplane of equation�x sin� C z cos� D 0, let S�
be the symmetry with respect to …� , and let

†�� D † \ ¹�x sin � C z cos � � 0º:

If B� is the ball centered at the origin of radius � > 0, we notice that S� .B�/ D B�.

Lemma 5.1. Given � 2 Œ0; �=2/, there exists �� > 0 such that, outside B�� , S� .†�� / is
above †. Moreover, �� can be chosen as an increasing function of � .

Proof. In R2, let p D .a cos ˛; a sin ˛/ be a point with a > 0 and 0 � ˛ � � , and let Rt
be the rotation of angle t . If 0 � t � 2.� � ˛/, then the angle between

�����!
pRt .p/ and the

vertical z-axis is ˛ C t=2, and then at most � (see Figure 3).
Because of the asymptotic of †, the intersection † \ @B� can be parametrized by

@B� \ ¹z D 0º in the following way: there is a function g such that

† \ @B� D
°��

1 �
g2.X/

jX j2

�1=2
X; g.X/

�
IX 2 @B� \ ¹z D 0º

±
;
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Figure 3. Angle between
�����!
pRt .p/ and the z-axis.

where g satisfies

g.X/ D A ln jX j C B CO.jX j�1/ if n D 2;

g.X/ D B C AjX j�.n�2/ CO.jX j�.n�1// if n > 2;

and

(5.1) dg.X/.V / D O.jX j�2/ jV j

for any vector V tangent to @BjX j.
In the .x; Y; z/ coordinates, we can extend the rotation Rt to RnC1 by fixing the Y

coordinates. Let � be large and let P 2 †�
�
\ @B�. We can write

P D
��
1 �

g2.X/

jX j2

�1=2
X; g.X/

�
for some X D .x; Y /. Then S� .P / is above † if Rt .P / does not meet † for 0 < t �

2.� � ˛/, where 0 � ˛ � � is such that��
1 �

g2.X/

jX j2

�1=2
x; g.X/

�
D a.cos˛; sin˛/

for some a > 0 (see Figure 4). In particular, S� .P / D R2.��˛/.P /. We notice that Rt .P /
belongs to @B�. Then, if Rt .P / 2 †, we must have

Rt .P / D
��
1 �

g2.X 0/

jX 0j2

�1=2
X 0; g.X 0/

�
for some X 0 2 @B� \ ¹z D 0º.

As a consequence, by integrating (5.1) along @B� \ ¹z D 0º, we have

jg.X/ � g.X 0/j � C��2jX �X 0j � C 0��2
ˇ̌̌�
1 �

g2.X/

jX j2

�1=2
X�

�
1 �

g2.X 0/

jX 0j2

�1=2
X 0
ˇ̌̌
:
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Figure 4. Configuration if S� .P / is not above †

This implies that
�����!
PRt .P / makes an angle less than C 00��2 with the horizontal plane

¹z D 0º. Therefore, if �� is chosen such that this angle is less than �=2 � � , we obtain a
contradiction with Rt .P / 2 †, and the lemma is proved.

We are now ready to finish the proof of Theorem 1.2. Let

T D
®
� 2 Œ0; �=2�ISˇ .†

�
ˇ / is above † for all ˇ 2 Œ0; ��

¯
:

Since † � ¹z > 0º, we may choose �0 > 0 small enough such that †�
�0
� RnC1nB��0 .

By Lemma 5.1, we have Œ0; �0�� T . The set T is then a closed interval of the form Œ0; �1�.
Let us notice that when we symmetrize with respect to …� , the image of a point on @B�
stays on @B�, so that points in @† cannot be sent to interior points of† and interior points
of † cannot be sent to @†.

Then, if �1 < �=2, by Lemma 5.1, there is a point P 2 †�
�1

such that one of the
following occurs:

• P … …�1 , S�1.P / 2 †, and S�1.†
�
�1
/ is on one side of †;

• P 2 …�1 , † is orthogonal to …�1 at P , and S�1.†
�
�1
/ is on one side of †.

In the first case, if P … @†, then the maximum principle gives that † is symmetric
with respect to …�1 . If P 2 @†, then, by free boundary hypothesis, † and S�1.†

�
�1
/ are

normal to @B and thus tangent, since S�1.†
�
�1
/ is on one side of †. As a consequence, the

boundary maximum principle implies that † is symmetric with respect to …�1 .
In the second case, if P … @†, the boundary maximum principle implies that † is

symmetric with respect to …�1 . If P 2 @†, then, as S�1.†
�
�1
/ is on one side of †, we

can locally parametrize † and S�1.†
�
�1
/ over a quarter of the tangent plane TP† by two

functions u and v such that u � v, u.P / D v.P /, and ru.P / D rv.P / (this last case
is not considered by Park and Pyo in [15]). Moreover, at P , the tangent vector P is an
eigenvector of the second fundamental form of † (see (2.1)). Let us also notice that, at P ,



L. Mazet and A. Mendes 294

S�1.@† \†
�
�1
/ is on one side of @† in Sn. This implies that, along @† \…�1 , the scalar

product .N; �1/ has a constant sign and vanishes at P , where �1 is the unit normal to…�1 .
Since �1 is parallel, this implies that .rS

TN; �1/ vanishes at P for any T 2 TP @† \…�1 .
Notice that �1 2 TP @†, so 0 D .rS

TN; �1/ D �B
S
@†
.T; �1/ D �B.T; �1/ by (2.2). This

implies that, for any V; W 2 TP†, B.S�1.V /; S�1.W // D B.V; W /. Thus the Hessian
of u and v at P coincide. So, applying Serrin’s corner maximum principle [17] to v � u,
we obtain that u � v and † is symmetric with respect to …�1 .

In any case, we obtain that …�1 is a plane of symmetry of †, which is not possible by
Lemma 5.1. This gives that �1 D �=2. Then S�=2.† \ ¹x � 0º/ is above †. The same
argument gives that S�=2.† \ ¹x � 0º/ is above †. As a consequence, † is symmetric
with respect to ¹x D 0º.

By changing the coordinate system, we obtain that† is symmetric with respect to any
vertical hyperplane passing through the origin and then invariant by rotation around the
vertical z-axis: † is a catenoidal surface.

Remark. In Theorem 1.2, if we know that the end is planar, then the catenoidal hyper-
surface is planar, since this is the only catenoidal hypersurface with a planar end. Thus we
recover Theorem 3.3 in [15].

A. Harnack inequality

In this paper, we are considering solutions u to some elliptic equations on † under the
Robin boundary condition @�uC uD 0 on @†. Elliptic regularity theory for this condition
can be found in Theorem 2.4 and 2.6 of [11]. Besides, one can also remark that, if d is
a smooth function on † with @�d D 1 (for example, �d could be the distance function
to @†) and v D edu, then @�v D .@�d/e

du C ed@�u D 0 and v solves some elliptic
equation. So results for Neumann boundary data can be translated to the Robin boundary
condition.

In the proof of Proposition 2.1, we use a Harnack inequality up to the boundary that
can be derived from the following one.

Proposition A.1. Let † be a Riemannian manifold with compact boundary and let u be
a positive solution to ´

�uC .X;ru/C qu D 0 on †;
@�u D 0 on @†;

where X is a smooth vector field and q is a smooth function. Then, given a compact
domain U � †, there exists a constant C > 0 (not depending on u/ such that, for any
p; q 2 U , we have

u.p/

u.q/
� C:

No such statement seems to appear in the literature. Similar results appear in [4, 22],
but they are not directly applicable here because of certain hypotheses.
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Proof. In order to prove such an estimate, it is enough to prove an upper bound on jr lnuj.
Let v D lnu. We have

(A.1) �v D
�u

u
�
jruj2

u2
D �q � .X;rv/ � jrvj2:

Now, let w D jrvj2 and consider a nonnegative function � with compact support such
that � D 1 on @† and � � 1 on U . Let p denote a point of maximum of �w. We notice
that @�v D 0, so rv is tangent to @†. Thus,

@�.�w/ D w@�� C 2�.r�rv;rv/ D w@�� C 2�.rrvrv; �/

D w@�� C 2�B@†.rv;rv/ � w.@�� C 2H/;

where B@† is the second fundamental form of @† andH is an upper bound for the princi-
pal curvatures of @†. So, choosing � such that @�� C 2H < 0, we can ensure that @�.�w/
is negative. Thus the maximum cannot be on the boundary of †. Let us compute �.�w/
by using Bochner’s formula:

�.�w/ D w�� C 2.r�;rw/C ��.jrvj2/

D w�� C 2.r�;rw/C 2�
�
.rv;r�v/C jr2vj2 C Ric.rv;rv/

�
� w.�� � 2K�/C 2.r�;rw/C2� jr2vj2C2�.rv;r.�q�.X;rv/ � w//;

where �K is a lower bound on the Ricci tensor. We also have

.rv;r.X;rv// D .rrvX;rv/C .X;rrvrv/ � Kw C .rv;rXrv/

D Kw C
1

2
.X;rw/;

where K is also chosen to be an upper bound for the tensor .r�X; �/.
At p, we have 0 D wr� C �rw, that is,

rw D �w
r�

�
�

Thus,

�.�w/ � w.�� � 4K�/C 2�jr2vj2 � 2�.rv;rq/

� 2
jr�j2

�
w C w.X;r�/C 2w.rv;r�/:

At p, �.�w/ � 0, and so

0 � 2� jr2vj2 C w
�
�� � 4K� � 2

jr�j2

�
C .X;r�/

�
(A.2)

� 2 jr�jw3=2 � 2� jrqjw1=2:

It is well known that
jr
2vj �

1
p
n
j�vj:
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Then, by (A.1), we have

jr
2vj2 �

1

n
j�vj2 D

1

n
.w2 � aw3=2 � bw � cw1=2 � d/

for some constants a, b, c and d depending only on X and q. Thus, combining with (A.2)
and multiplying by �.p/, we obtain, at p,

0 �
2

n
.�w/2 � A.�w/3=2 � B.�w/ � C.�w/1=2 �D

for some constants A, B , C and D depending only on K, X , q and �. This implies that
�.p/w.p/ �M for some constantM DM.A;B;C;D/, and thus w.q/ �M for q 2 U ,
since � � 1 on U .

As a consequence, we have the following Harnack inequality for the Robin boundary
condition.

Proposition A.2. Let † be a Riemannian manifold with compact boundary and let u be
a positive solution to ´

�uC qu D 0 on †;
@�uC u D 0 on @†;

where q is a smooth function. Then, given a compact domain U � †, there exists a con-
stant C > 0 (not depending on u/ such that, for any p; q 2 U , we have

u.p/

u.q/
� C:

Proof. As explained above, let d be a smooth function on † such that @�d D 1 and
v D edu. We then have

@�v D .@�d/e
d uC ed @�u D 0:

We also have

�v D ed .ujrd j2 C u�d C 2.ru;rd/C d�u/

D 2.rv;rd/C .�d � jrd j2 � dq/v:

So the above proposition applies to v and gives the expected result for u.
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