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Abstract
In this paper, we prove that there exists a universal constant C , depending only on positive
integers n ≥ 3 and p ≤ n − 1, such that if Mn is a compact free boundary submanifold of
dimension n immersed in the Euclidean unit ball Bn+k whose size of the traceless second
fundamental form is less than C , then the pth cohomology group of Mn vanishes. Also,
employing adifferent technique,weobtain a rigidity result for compact free boundary surfaces
minimally immersed in the unit ball B2+k .
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1 Introduction

In 1968, Simons [19] proved that if Mn is a compact n-manifold minimally immersed in
the unit sphere Sn+k whose second fundamental form A satisfies ‖A‖2 ≤ nk

2k−1 , then either

‖A‖2 = 0 (i.e., Mn is totally geodesic) or ‖A‖2 = nk
2k−1 . Later, Lawson [13] and Chern,

do Carmo, and Kobayashi [7] classified all minimal submanifolds in S
n+k which satisfy

‖A‖2 = nk
2k−1 . Such submanifolds are either theVeronese surface inS4 or a family of products

of two spheres with appropriate radii, which are currently known as minimal Clifford tori.
In particular, in codimension one, only Clifford tori occur. These important results say that
there exists a gap in the space of minimal submanifolds in Sn+k in terms of the length of their
second fundamental forms and their dimensions. This kind of behavior has been observed
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in many other cases as we can see, for instance, in [1,4,9,12,14–16,18,20] and references
therein.

We point out here the important contribution done by Lawson and Simons in [14], where
they proved a topological gap result without making any minimality assumption on the
submanifold. The result is the following.

Theorem 1.1 (Lawson-Simons) Let Mn be a closed n-manifold immersed in the Euclidean
unit (n + k)-sphere with second fundamental form A satisfying

‖A‖2 < min{p(n − p), 2
√
p(n − p)},

where p ≤ n − 1 is a positive integer. Then, for any finitely generated Abelian group G,

Hp(M;G) = Hn−p(M;G) = 0.

In particular, if ‖A‖2 < min{n − 1, 2
√
n − 1}, then Mn is a homotopy sphere.

Taking a new perspective, Ambrozio and Nunes [3] recently obtained a geometric gap
type theorem for free boundary minimal surfaces M2 in the Euclidean unit 3-ball B3. They
proved that if ‖A‖2(x)〈x, N (x)〉2 ≤ 2, where N (x) is the unit normal vector at x ∈ M2,
then M2 is either the equatorial disk or the critical catenoid.

We recall that a submanifold Mn , with nonempty boundary ∂M , which is minimally
immersed in the unit ball Bn+k and such that M ∩ ∂Bn+k = ∂M is called free boundary if
Mn intersects ∂Bn+k = S

n+k−1 in a right angle along its boundary ∂M . Such submanifolds
are critical points for the area functional for those variations that keep the boundary of
Mn into the boundary of Bn+k . It is very interesting to note that many aspects of closed
minimal submanifolds in the unit sphere have an analogous one for free boundary minimal
submanifolds in the unit ball. In this sense, the Ambrozio-Nunes’ theorem can be seen as the
analogous result of [7,13,19].

Our goal in this paper is to obtain a topological gap theorem for compact free boundary
(not necessarily minimal) submanifolds in the unit ball. In order to state our theorems, we
recall that the traceless second fundamental form is defined as�(u, v) = A(u, v)−〈u, v〉 
H ,
for u, v ∈ TxM , and x ∈ M , where 
H is the mean curvature vector of M . In particular,
‖�‖2 = ‖A‖2 − n‖ 
H‖2.

There exists a significant difference between the two-dimensional case and the n-
dimensional ones, for n ≥ 3, in terms of the technique employed to obtain the results.
In fact, the two-dimensional case follows from well-known properties of free boundary sur-
faces, while for higher dimensions, we need to apply more sophisticated tools. We have the
following theorems.

Theorem 1.2 Let �2 be a free boundary compact orientable surface immersed in B
2+k , for

any positive integer k. If ‖�‖2 ≤ 2, then �2 is topologically a disk.

If �2 is minimal, we can improve the constant of Theorem 1.2 and, in virtue of a result
due to Fraser and Schoen [10], obtain the following rigidity result.

Corollary 1.3 Let �2 be a free boundary compact orientable surface minimally immersed in
B
2+k , for any positive integer k. If ‖A‖2 ≤ 4, then �2 is the flat equatorial disk.

In higher dimensions, we prove that there are no nontrivial harmonic p-forms on Mn

with either Neumann or Dirichlet condition on the boundary. So, using the Hodge-de Rham
Theorem, we actually have the following result.
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Theorem 1.4 Let Mn be a compact oriented submanifold immersed in B
n+k , with n ≥ 3,

which is free boundary and has flat normal bundle. If ‖�‖2 <
np
n−p , for some positive integer

p ≤ ⌊ n
2

⌋
, then the pth and the (n − p)th cohomology groups of Mn with real coefficients

vanish, that is, H p(M;R) = Hn−p(M;R) = 0. In particular, if ‖�‖2 < n
n−1 , then all

cohomology groups Hq(M;R), with q = 1, . . . , n−1, vanish and M has only one boundary
component.

In order to prove this theorem, we apply thewell-established Böchner’s technique together
with an appropriate estimate for the Weitzenböck tensor of Mn in terms of its extrinsic
geometry. To deal with the boundary term, we use a Hardy type inequality for submanifolds
which was recently discovered by Batista, Mirandola and the third author [5].

When Mn is minimal, we can improve the constant obtained in Theorem 1.4.

Theorem 1.5 Let Mn be a compact oriented submanifold minimally immersed in Bn+k , with
n ≥ 3, which is free boundary and has flat normal bundle. Given a positive integer p ≤ ⌊ n

2

⌋
,

we have the following assertions:

(1) If ‖A‖2 < n2
2(n−p) , then H p(M;R) vanishes. If, additionally, p = ⌊ n

2

⌋
, then

Hn−p(M;R) also vanishes.

(2) If ‖A‖2 ≤ (n−p+1)n3

4p(n−p)2
and 1 ≤ p ≤ ⌊ n

2

⌋ − 1, then Hn−p(M;R) vanishes.

In particular, if ‖A‖2 < n2
2(n−1) , then all cohomology groups H

q(M;R), with q = 1, . . . , n−
1, vanish and M has only one boundary component.

Our theorems lead us to the following questions:

Open questions: Do Theorems 1.4 and 1.5 hold without the condition on the flatness of the
normal bundle? What are the best constants in such theorems?

2 Preliminaries

LetMn be a compactRiemanniann-manifoldwith nonemptyboundary.Let denote by�p(M)

the space of differential p-forms on M , d : �p(M) → �p+1(M) the exterior derivative, and
d∗ : �p(M) → �p−1(M) the codifferential, which can be written in terms of the Hodge star
operator on M as d∗ = (−1)n(p+1)+1 ∗ d∗. We say that ω ∈ �p(M) is harmonic if dω = 0
and d∗ω = 0 on M , that is, ω is closed and coclosed. A harmonic p-form ω on M is called
tangential if

iνω = 0 on ∂M

and normal if

ν ∧ ω = 0 on ∂M .

We can consider the following subspaces of �p(M):

Hp
N (M) = {ω ∈ �p(M);ω is harmonic and tangential}

and

Hp
T (M) = {ω ∈ �p(M);ω is harmonic and normal}.
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It is well known that the Hodge star operator gives an isomorphism between Hn−p
T (M)

and Hp
N (M). Then, using the Hodge-de Rham Theorem (see [2, Theorem 3]), we have

Hn−p
T (M) � Hp

N (M) � H p(M;R).

An important fact about H1
T (M) is that dimH1

T (M) ≥ r − 1, where r is the number of
boundary components of M (see [2, Lemma 4]).

Now, let us present some tools which are going to be of use. We start by recalling the
integral version of the Weitzenböck formula for manifolds with umbilical boundary (see, for
instance, [8,21]). Note that this is exactly the case when M is a free boundary submanifold
in the Euclidean unit ball.

Lemma 2.1 (Weitzenböck formula) If ∂M is totally umbilical inMn with second fundamental
form B = I , then

∫

M
‖∇ω‖2 + 〈Rp(ω), ω〉 = −α

∫

∂M
‖ω‖2,

where α = p or α = n − p, depending whether ω ∈ Hp
N (M) or ω ∈ Hp

T (M), respectively.
Here, Rp represents the Weitzenböck tensor acting on p-forms.

Another useful result is the refinedKato’s inequality for harmonic forms (see, for instance,
[6,11]).

Lemma 2.2 (RefinedKato’s inequality) Ifω is a harmonic p-form on Mn, with 1 ≤ p ≤ ⌊ n
2

⌋
,

then

‖∇ω‖2 ≥ n − p + 1

n − p
‖∇‖ω‖‖2.

Now, we are going to present two results in the context of submanifolds. Let Bn+k be
the closed unit ball in R

n+k centered at the origin. Consider a compact oriented immersed
submanifold Mn in B

n+k with nonempty boundary ∂M and denote by X the unit vector
normal to ∂Bn+k = S

n+k−1 which is outward pointing. Denote by ν the conormal vector
field along ∂M , that is, the unit vector normal to ∂M and tangent to M which points to the
outside of M . In this setting, saying that Mn is free boundary in Bn+k is equivalent to saying
that ν = X along ∂M .

Denote by A the second fundamental form of M in Bn+k , by 
H the mean curvature vector
of M with respect to A and by � the traceless part of A, i.e.,

�(u, v) = A(u, v) − 〈u, v〉 
H , u, v ∈ TxM, x ∈ M .

If Mn is a compact oriented immersed submanifold in B
n+k which is free boundary and

has dimension n ≥ 3, then it holds a Hardy type inequality on Mn . In fact, from a result due
to Batista, Mirandola and the third author (see [5, Theorem 3.2]), we have

(n − γ )p

pp

∫

M

up

rγ
+ γ (n − γ )p−1

pp−1

∫

M

up

rγ
‖∇̄r⊥‖2

≤ 1

pp

∫

M

1

rγ−p
‖p∇u + nu 
H‖p + (n − γ )p−1

pp−1

∫

∂M

up

rγ−1

for all nonnegative function u ∈ C1(M), p ∈ [1,∞), and γ ∈ (−∞, n), where r is the
distance function to the origin in Rn+k , ∇̄r denotes the gradient of r in Rn+k , and ∇u is the
gradient of u in Mn .

123



Annals of Global Analysis and Geometry (2019) 56:137–146 141

Taking p = 2, γ = 0 and observing that r ≤ 1 on Mn ⊂ B
n+k and r = 1 on ∂M ⊂ S

n ,
we have the following

Lemma 2.3 (Batista-Mirandola-Vitório) If Mn is a compact oriented immersed submanifold
in B

n+k which is free boundary and has dimension n ≥ 3, then
∫

M
u2 ≤

(
2

n

)2 ∫

M
‖∇u‖2 +

∫

M
u2‖ 
H‖2 + 2

n

∫

∂M
u2

for all nonnegative function u ∈ C1(M).

Finally, we are going to use an extrinsic estimate for the curvature term which appears in
the Weitzenböck formula (see [17]).

Lemma 2.4 (Lin) If Mn is immersed in R
n+k with flat normal bundle, then

〈Rp(ω), ω〉 ≥
(

p(n − p)‖ 
H‖2 − p(n − p)

n
‖�‖2 − |n − 2p|

√
p(n − p)

n
‖ 
H‖‖�‖

)

‖ω‖2.

3 Proof of Theorem 1.4

Fix 1 ≤ p ≤ ⌊ n
2

⌋
and ω ∈ Hp

N (M) or ω ∈ Hp
T (M), and define u = ‖ω‖. It follows from

the Weitzenböck formula and the refined Kato’s inequality that

−α

∫

∂M
u2 =

∫

M
‖∇ω‖2 +

∫

M
〈Rp(ω), ω〉

≥ n − p + 1

n − p

∫

M
‖∇u‖2 +

∫

M
〈Rp(ω), ω〉,

where α = p or α = n − p, depending whether ω ∈ Hp
N (M) or ω ∈ Hp

T (M), respectively.
Using Lemma 2.4, we obtain

−α

∫

∂M
u2 ≥ n − p + 1

n − p

∫

M
‖∇u‖2 + p(n − p)

∫

M
u2‖ 
H‖2

− p(n − p)

n

∫

M
u2‖�‖2 − (n − 2p)

√
p(n − p)

n

∫

M
u2‖ 
H‖‖�‖. (1)

Fix ε > 0 and observe that

‖ 
H‖‖�‖ ≤ ε

2
‖ 
H‖2 + 1

2ε
‖�‖2.

Then,

−α

∫

∂M
u2 ≥ n − p + 1

n − p

∫

M
‖∇u‖2 + A

∫

M
u2‖ 
H‖2 − Bϕ2

∫

M
u2,

where

A = A(n, p, ε) = p(n − p) − (n − 2p)ε

2

√
p(n − p)

n
,

B = B(n, p, ε) = p(n − p)

n
+ (n − 2p)

2ε

√
p(n − p)

n
,
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and ϕ = supM ‖�‖. Therefore, using Lemma 2.3, we have

0 ≥
(

α − 2B

n
ϕ2

) ∫

∂M
u2 +

(
n − p + 1

n − p
− 4B

n2
ϕ2

) ∫

M
‖∇u‖2

+ (
A − Bϕ2)

∫

M
u2‖ 
H‖2.

It follows from the above inequality that if

• ϕ2 <
nα

2B
= φ1,

• ϕ2 ≤ (n − p + 1)n2

4(n − p)B
= φ2, and

• ϕ2 ≤ A

B
= φ3,

then u = ‖ω‖ = 0 on ∂M , which implies that ω = 0 since ω is harmonic.
Now, to finish the proof of Theorem 1.4, we are going to prove that

np

n − p
= φ3(ε1) = max

ε>0
φ3 ≤ min{φ1(ε1), φ2(ε1)},

for

ε1 =
√

np

n − p
.

Claim 3.1
np

n − p
= φ3(ε1) = max

ε>0
φ3.

First, suppose that 2p < n. It is not difficult to see that there exists a unique a = a(n, p)
such that A(n, p, a) = 0. In fact,

a = 2
√
np(n − p)

n − 2p
.

Furthermore, A(n, p, ε) > 0 for ε ∈ (0, a) and A(n, p, ε) < 0 for ε > a. Also, lim
ε→0+ φ3 = 0.

Then, to calculate

max
ε>0

φ3 = max
ε∈(0,a)

φ3,

it is sufficient to find the critical points of ε �−→ φ3(n, p, ε) on the interval (0, a). Define

b = (n − 2p)

2

√
p(n − p)

n

and

c = p(n − p)

n
,

and observe that

φ3 = A

B
= ncε − bε2

cε + b
.
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Astraightforward calculation gives that the unique critical point ofφ3 on the interval (0,+∞)

is given by

ε1 = −b + √
b2 + nc2

c
.

Observing that

b2 + nc2 = p(n − p)(n − 2p)2

4n
+ p2(n − p)2

n

= pn(n − p)

4
,

we have

ε1 = −b + √
b2 + nc2

c

= n

p(n − p)

(

− (n − 2p)

2

√
p(n − p)

n
+

√
pn(n − p)

2

)

= n

2
√
p(n − p)

(
−n − 2p√

n
+ √

n

)

=
√

np

n − p
.

Then, evaluating A and B at ε = ε1, we obtain

A(n, p, ε1) = np

2

and

B(n, p, ε1) = n − p

2
.

Thus,

max
ε>0

φ3 = φ3(ε1) = np

n − p
.

If 2p = n, then A = p(n − p) = p2 and B = p(n−p)
n = p

2 . Therefore, φ3 is constant
equal to

A

B
= 2p = np

n − p
.

Claim 3.2 φ1(ε1) ≥ φ3(ε1).

Observe that 2B(n, p, ε1) = n− p. Then, φ1(ε1) ≥ φ3(ε1) is equivalent to α ≥ p, which
is clearly true because we are assuming that p ≤ ⌊ n

2

⌋ ≤ n
2 .

Claim 3.3 φ2(ε1) > φ3(ε1).

Using that 2B(n, p, ε1) = n − p and p ≤ n
2 , we obtain

φ2(ε1) = (n − p + 1)n2

2(n − p)2
>

n2

2(n − p)
≥ np

n − p
= φ3(ε1).
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4 Proof of Theorem 1.5

We start from inequality (1) assuming that 
H = 0, that is,

−α

∫

∂M
u2 ≥ n − p + 1

n − p

∫

M
‖∇u‖2 − p(n − p)

n

∫

M
u2‖�‖2.

Using Lemma 2.3 in this case, we get

0 ≥
(

α − 2p(n − p)

n2
ϕ2

) ∫

∂M
u2 +

(
n − p + 1

n − p
− 4p(n − p)

n3
ϕ2

) ∫

M
‖∇u‖2,

and again, the theorem follows if

• ϕ2 <
αn2

2p(n − p)
= φ4, and

• ϕ2 ≤ (n − p + 1)n3

4p(n − p)2
= φ5.

Studying the solutions of the algebraic equation φ4 = φ5, we obtain:

(a) If α = p, then φ4 < φ5, and it corresponds to the first part of assertion (1).
(b) If α = n − p and p = ⌊ n

2

⌋
, then φ4 < φ5, and it corresponds to the second part of

assertion (1).
(c) In the remaining cases, we have φ5 < φ4, and they correspond to assertion (2).

5 Proofs of Theorem 1.2 and Corollary 1.3

Let � be a free boundary compact orientable surface immersed in the Euclidean unit ball
B
2+k . If K represents the Gaussian curvature of � and kg represents the geodesic curvature

of ∂� in �, the Gauss–Bonnet Theorem says that
∫

�

K +
∫

∂�

kg = 2πχ(�) = 2π(2 − 2g − r),

where χ(�) is the Euler characteristic of �, g is the genus of �, and r is the number of
connect components of ∂�. From the assumption that � is free boundary in B

2+k , we have

• kg ≡ 1;
• |∂�| = 2

∫
�

(1 + 〈 
H , x〉),
where |∂�| represents the length of ∂�. On the other hand, the Gauss equation yields K =
‖ 
H‖2− 1

2‖�‖2. Thus, using the above properties and the Gauss–Bonnet Theorem, we obtain
∫

�

(
2 + 2〈 
H , x〉 + ‖ 
H‖2 − 1

2
‖�‖2

)
= 2π(2 − 2g − r), (2)

which can be rewritten in the form
∫

�

(
1 − ‖x‖2 + ‖x + 
H‖2 + 1 − 1

2
‖�‖2

)
= 2π(2 − 2g − r). (3)

Note that, if ‖�‖2 ≤ 2, then the left-hand side of (3) is positive, which implies that g = 0
and r = 1. This concludes the proof of Theorem 1.2.
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In the minimal case, equation (2) simplifies to
∫

�

(
2 − 1

2
‖A‖2

)
= 2π(2 − 2g − r).

Therefore, if ‖A‖2 ≤ 4, then 2 − 2g − r ≥ 0. So, we have two possible cases:

(i) 2 − 2g − r = 1. In this case, � is topologically a disk and the result follows from the
Fraser–Schoen’s Theorem [10].

(ii) 2 − 2g − r = 0. In this case, ‖A‖2 ≡ 4, and K ≡ −2, which contradicts Theorem 6 in
[22,23].
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