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Abstract In this paper, we obtain an analogue of Toponogov theorem in dimension
3 for compact manifolds M3 with nonnegative Ricci curvature and strictly convex
boundary ∂M . Here we obtain a sharp upper bound for the length L(∂�) of the
boundary ∂� of a free boundary minimal surface �2 in M3 in terms of the genus of
� and the number of connected components of ∂�, assuming � has index one. After,
under a natural hypothesis on the geometry of M along ∂M , we prove that if L(∂�)

saturates the respective upper bound, then M3 is isometric to the Euclidean 3-ball and
�2 is isometric to the Euclidean disk. In particular, we get a sharp upper bound for
the area of �, when M3 is a strictly convex body in R3, which is saturated only on the
Euclidean 3-balls (by the Euclidean disks). We also consider similar results for free
boundary stable CMC surfaces.

Keywords Free boundary surfaces · Minimal surfaces · Constant mean curvature
surfaces
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1 Introduction

A classical result due to Toponogov [19] (see [11] for an alternative proof) says that if
M2 is a closed Riemannian surface with Gaussian curvature K ≥ 1, then the length of
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1246 A. Mendes

any closed simple geodesic γ ⊂ M2 satisfies L(γ ) ≤ 2π . Furthermore, if L(γ ) = 2π ,
then M2 is isometric to the standard unit 2-sphere S2.

In order to obtain a version of Toponogov theorem in dimension 3, Bray et al.
[4] considered a real projective plane �2 embedded into a compact Riemannian 3-
manifold M3. They proved that if � has least area among all real projective planes
embedded into M , and M has scalar curvature R ≥ 6, then the area of � satisfies
A(�) ≤ 2π . Moreover, if A(�) = 2π , then M3 is isometric to RP

3 endowed with
the canonical metric.

A few months later, Bray et al. [5] considered the infimum of all homotopically
nontrivial 2-spheres in a compact Riemannian 3-manifold (M3, g) with π2(M) �= 0.
In fact, if F denotes the set of all smooth maps f : S2 → M which represent a
nontrivial element of π2(M) and

A(M, g) := inf{area(S2, f ∗g) : f ∈ F},

they proved that

A(M, g) inf
M

R ≤ 8π,

where R is the scalar curvature of (M, g). Furthermore, if equality holds, then the
universal cover of (M3, g) is isometric to R × S

2 up to scaling. See [6] and [15] for
similar results.

In a more recent work, Marques and Neves [14] considered the case of unstable
minimal 2-spheres. Among other things, they proved that if 〈 , 〉 is a Riemannian
metric on S3 with scalar curvature R ≥ 6, but 〈 , 〉 does not have constant sectional
curvature one, then there exists aminimal 2-sphere�2 embedded intoM3 = (S3, 〈 , 〉)
satisfying A(�) < 4π . Also,� has index zero or one. This can be seen as an analogue
of Toponogov theorem in dimension 3, since, in general, there is no area bound for
minimal 2-spheres in M3, as pointed out in [14].

Our goal in this work is to obtain a version of Toponogov theorem in dimension
3 for compact manifolds with nonempty boundary. Before stating our results, let us
remember an important result in the setting.

LetM3 be a compactRiemannian 3-manifoldwith nonempty boundary ∂M . Denote
by FM the set of all immersed disks in M whose boundaries are homotopically non-
trivial curves in ∂M . If FM �= ∅, define

A(M) = inf
�∈FM

A(�) and L(M) = inf
�∈FM

L(∂�).

Theorem 1.1 (Ambrozio [2]) Let M3 be a compact Riemannian 3-manifold with
nonempty boundary ∂M. Assume that ∂M is mean convex and FM �= ∅. Then

1

2
A(M) inf

M
R + L(M) inf

∂M
H ∂M ≤ 2π,

where R is the scalar curvature of M and H ∂M is the mean curvature of ∂M. Fur-
thermore, if equality holds, the universal cover of M is isometric to R × �0, where
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Rigidity of Free Boundary Surfaces in Compact 3-Manifolds 1247

�0 is the disk with constant Gaussian curvature infM R/2 whose boundary ∂�0 has
constant geodesic curvature inf∂M H.

Remark 1.2 An immediate consequence of Ambrozio theorem is that if infM R = 0,
inf∂M H ∂M = 1, and L(M) = 2π , then the universal cover of M is isometric to
R × D̄, where D̄ is the unit disk in R2 endowed with the canonical metric.

Observe that Ambrozio’s result is an analogue of Bray–Brendle–Neves theorem
for 3-manifolds with nonempty boundary. Motivated by Marques and Neves’ work
[14], we consider the case of unstable minimal surfaces in 3-manifolds with nonempty
boundary.

Now, let us state our first result. Definitions will be given in Sect. 2.

Theorem 1.3 (Theorem 2.2) Let M3 be a compact Riemannian 3-manifold with
nonempty boundary ∂M. Suppose that Ric ≥ 0 and II ≥ 1, where Ric is the Ricci ten-
sor of M and II is the second fundamental form of ∂M. If �2 is a properly embedded
free boundary minimal surface of index one in M3, then the length of ∂� satisfies

L(∂�) ≤ 2π(g + r), (1.1)

where g is the genus of � and r is the number of connected components of ∂�.
Moreover, if equality holds, we have the following:

(i) � (w.r.t. the induced metric from M) is isometric to the Euclidean unit disk D̄;
(ii) ∂� is a geodesic of ∂M;
(iii) � is totally geodesic in M; and
(iv) all sectional curvatures of M vanish on �.

In [9], Fraser and Schoen proved that if �2 is a compact orientable surface with
nonempty boundary, then σ1(�)L(∂�) ≤ 2π(g+r), where σ1(�) is the first nonzero
Steklov eigenvalue of �. On the other hand, Fraser and Li [8] proved that if Ric ≥ 0,
II ≥ 1, and �2 is a properly embedded minimal surface in M3 with free boundary
in ∂M , then σ1(�) ≥ 1/2. As a corollary, they obtained that L(∂�) ≤ 4π(g + r).
However, this bound is not sharp. Thus, Theorem 1.3 is an improvement of Fraser and
Li’s result to a sharp upper bound when we assume that � has index one.

If we make an extra assumption on the geometry of M along ∂M , we can charac-
terize the global geometry of M when equality in (1.1) holds.

Theorem 1.4 (Corollary 2.4) Let M3 be a compact Riemannian 3-manifold with
nonempty boundary ∂M. Suppose that Ric ≥ 0, II ≥ 1, and KM (Tp∂M) ≥ 0 for
all p ∈ ∂M, where KM is the sectional curvature of M. If �2 is a properly embedded
free boundary minimal surface of index one in M3, then the length of ∂� satisfies

L(∂�) ≤ 2π(g + r).

Furthermore, if equality holds, then M3 is isometric to the Euclidean unit 3-ball B̄3

and �2 is isometric to the Euclidean unit disk D̄.
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Using Theorem 1.4 together with the isoperimetric inequality for minimal disks in
R
3 (see [3] for the general case), we have a sharp upper bound for the area of a properly

embedded free boundary minimal disk of index one in a strictly convex domain inR3.

Theorem 1.5 (Corollary 2.5) Let� be a smooth bounded domain inR3 whose bound-
ary ∂� is strictly convex, say II ≥ 1, where II is the second fundamental form of ∂�

in R
3. If �2 is a properly embedded free boundary minimal disk of index one in �,

then the area of � satisfies

A(�) ≤ π.

Moreover, if equality holds, � is the Euclidean unit 3-ball and �2 is the Euclidean
unit disk.

For the general case of a free boundary minimal surface (not necessarily a disk) of
index one in a strictly convex domain � in R3, we introduce the constant

R(�) = inf
y∈�

sup
x∈∂�

|x − y|

and have the following result.

Theorem 1.6 (Corollary 2.6) Let� be a smooth bounded domain inR3 whose bound-
ary ∂� is strictly convex, say II ≥ 1. If �2 is a properly embedded free boundary
minimal surface of index one in �, then the area of � satisfies

A(�) ≤ π(g + r)R(�).

Moreover, if equality holds, � is the Euclidean unit 3-ball and �2 is the Euclidean
unit disk.

It would be interesting to know if it is true that when M3 satisfies Ric ≥ 0 and
II ≥ 1, but M3 is not isometric to B̄3, then there exists a properly embedded free
boundary minimal surface �2 of index one in M3 satisfying L(∂�) < 2π(g + r).

In Sect. 3, we obtain similar results to Theorems 1.3 and 1.4 for free boundary
stable CMC surfaces. We point out that Theorems 1.5 and 1.6 are also true for free
boundary stable CMC surfaces assuming they are minimal.

2 Free Boundary Minimal Surfaces of Index One

Let M3 be a compact connected Riemannian 3-manifold with nonempty boundary
∂M . In this work, we assume that M has nonnegative Ricci curvature and that ∂M is
strictly convex, which means II(V, V ) = 〈DV X, V 〉 > 0 for all V ∈ Tp∂M \ {0} and
p ∈ ∂M , where X is the outward pointing unit normal to ∂M and D is the Levi-Civita
connection of M . Here, II is the second fundamental form of ∂M in M . Under these
hypotheses, by [8, Theorem 2.11], M3 is diffeomorphic to the Euclidean unit 3-ball
B̄3. In particular, M is orientable.
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Rigidity of Free Boundary Surfaces in Compact 3-Manifolds 1249

Let�2 be a compact surface with nonempty boundary ∂�. Suppose�2 is properly
embedded into M3, i.e., �2 is embedded into M3 and � ∩ ∂M = ∂�. Since M3 is
diffeomorphic to the unit ball B̄3, which is simply connected, � must be orientable.
Fix a unit normal to �, say N , and denote by A the second fundamental form of �,
that is, A(Y, Z) = 〈DY N , Z〉, Y, Z ∈ Tx�, x ∈ �. Also, denote by ν the outward
pointing conormal along ∂� in �. We say that � is free boundary if � meets ∂M
orthogonally. In other words, � is free boundary if ν = X along ∂�.

Let t 
−→ �t , t ∈ (−ε, ε), be a variation of � = �0. It is well known that the first
variation of area is given by

d

dt

∣
∣
∣
∣
t=0

A(�t ) =
∫

�

div�(ξ)dσ =
∫

�

Hφdσ +
∫

∂�

〈ξ, ν〉ds, (2.1)

where ξ = ∂
∂t |t=0 is the variation vector field, φ = 〈ξ, N 〉, and H = tr A is the

mean curvature of � in M . It follows from (2.1) that � is a critical point for the area
functional for variations that preserve the property � ∩ ∂M = ∂� if and only if �

is minimal with free boundary. Also, if � is minimal with free boundary, the second
variation of area is given by

d2

dt2

∣
∣
∣
∣
t=0

A(�t ) = I(φ, φ),

where I : C∞(�) × C∞(�) → R is the index form of � given by

I(ψ, φ) = −
∫

�

ψ{
φ+(Ric(N , N )+|A|2)φ}dσ +
∫

∂�

ψ

{
∂φ

∂ν
− II(N , N )φ

}

ds.

Above, Ric is the Ricci tensor of M and 
 is the Laplace operator of � with respect
to the induced metric from M .

We say that φ ∈ C∞(�) is an eigenfunction of I associated to the eigenvalue
λ ∈ R if I(ψ, φ) = λ〈ψ, φ〉L2(�) for all ψ ∈ C∞(�). This is equivalent to saying
that φ solves the Robin-type boundary value problem

⎧

⎨

⎩

Lφ + λφ = 0 on �,

∂φ

∂ν
= II(N , N )φ along ∂�,

where L = 
+ (Ric(N , N )+ |A|2) is the Jacobi operator of �. If � is minimal with
free boundary, the index of � is defined as the number of negative eigenvalues of I
counted with multiplicities. The index of � is denoted by ind(�). It is well known
that the first eigenvalue λ1 of I is characterized by the Rayleigh formula

λ1 = inf
φ∈C∞(�)\{0}

I(φ, φ)
∫

�
φ2dσ

. (2.2)
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1250 A. Mendes

Thus, it follows directly from (2.2) that, under the assumptions Ric ≥ 0 and II > 0,
all free boundary minimal surfaces have index at least one, since I(1, 1) < 0.

Before proving our first result, we are going to state a very important lemma. This
lemma is based on an argument presented in [12] (see also [13]).

Lemma 2.1 Let �2 be a compact Riemannian surface with nonempty boundary ∂�.
Suppose that F : � → D̄ and φ1 : � → R are continuous functions such that
F(� \ ∂�) ⊂ D and φ1 ≥ 0. Then, there exists h ∈ Aut(D̄) such that

∫

�

(h ◦ F)φ1dσ = 0.

Proof See Appendix. ��
Our first result is the following.

Theorem 2.2 Let M3 be a compact Riemannian 3-manifold with nonempty boundary
∂M. Suppose that Ric ≥ 0 and II ≥ 1, where Ric is the Ricci tensor of M and II is the
second fundamental form of ∂M. If�2 is a properly embedded free boundary minimal
surface of index one in M3, then the length of ∂� satisfies

L(∂�) ≤ 2π(g + r), (2.3)

where g is the genus of � and r is the number of connected components of ∂�.
Moreover, if equality holds, we have the following:

(i) � (w.r.t. the induced metric from M) is isometric to the Euclidean unit disk D̄;
(ii) ∂� is a geodesic of ∂M;
(iii) � is totally geodesic in M; and
(iv) all sectional curvatures of M vanish on �.

Proof Let φ1 : � → R be the first eigenfunction of I. We know that φ1 does
not change sign. Then, without loss of generality, we can assume φ1 ≥ 0. Since
ind(�) = 1, for all f ∈ C∞(�) with

∫

�
f φ1dσ = 0, we have I( f, f ) ≥ 0, i.e.,

∫

�

{|∇ f |2 − (Ric(N , N ) + |A|2) f 2}dσ −
∫

∂�

II(N , N ) f 2ds ≥ 0. (2.4)

On the other hand, by [10, Theorem 7.2], there exists a proper conformal branched
cover F : � → D̄ satisfying deg(F) ≤ g + r . By Lemma 2.1, we can assume
∫

�
fiφ1dσ = 0, where F = ( f1, f2). Then, using fi (i = 1, 2) as a test function in

(2.4), we have

0 ≤
∫

�

{|∇ fi |2 − (Ric(N , N ) + |A|2) f 2i }dσ −
∫

∂�

II(N , N ) f 2i ds

≤
∫

�

|∇ fi |2dσ −
∫

∂�

f 2i ds,
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Rigidity of Free Boundary Surfaces in Compact 3-Manifolds 1251

where above we have used that Ric ≥ 0 and II ≥ 1. Hence, because F(∂�) ⊂ S
1

(since F is proper) and F is conformal,

0 ≤
2

∑

i=1

(∫

�

|∇ fi |2dσ −
∫

∂�

f 2i ds

)

= 2
∫

�

dF∗gcan − L(∂�)

= 2π deg(F) − L(∂�) ≤ 2π(g + r) − L(∂�),

which implies (2.3).
If equality in (2.3) holds, all inequalities above must be equalities. Then, A ≡

0, Ric(N , N ) = 0 on �, and II(N , N ) = 1 along ∂�. Using the Gauss equation
R + H2 − |A|2 = 2(Ric(N , N ) + K ), where K is the Gaussian curvature of � and
R is the scalar curvature of M , we have 2K = R ≥ 0. Observe that, since � is
free boundary (ν = X along ∂�), the geodesic curvature of ∂� in � is given by
κ = g(DT ν, T ) = g(DT X, T ) = II(T, T ) ≥ 1, where T is the unit tangent to ∂�.
Then, by Gauss–Bonnet theorem,

2π(2 − 2g − r) = 2πχ(�) =
∫

�

Kdσ +
∫

∂�

κds

≥ L(∂�) = 2π(g + r),

i.e.,

2 ≥ 3g + 2r,

which implies r = 1 and g = 0. Then all inequalities above must be equalities.
So K ≡ 0 and κ ≡ 1. Also, observe that the geodesic curvature κ̄ of ∂� in ∂M
(w.r.t. N ) satisfies κ̄ = g(DT N , T ) = A(T, T ) = 0, and thus ∂� is a geodesic
of ∂M . Now, let x ∈ � and {e1, e2, e3 = N } ⊂ TxM be such that {e1, e2} is an
orthonormal basis of Tx� and denote by KM the sectional curvature of M . Since
Ric(e1, e1) + Ric(e2, e2) + Ric(e3, e3) = R = 0 on � and Ric ≥ 0 everywhere, we
have Ric(ei , ei ) = 0 on � for i = 1, 2, 3, which implies KM (ei , e j ) = 0 for i �= j . ��

Below, we are going to present some corollaries of Theorem 2.2. But, before doing
that, let us state an important result due to Xia [20].

Theorem 2.3 (Xia) Let Mn+1 be a compact Riemannian (n + 1)-manifold with
nonempty boundary ∂M. Suppose that Ric ≥ 0 and II ≥ c > 0 for some con-
stant c > 0, where Ric is the Ricci tensor of M and II is the second fundamental
form of ∂M in M. Then, the first nonzero eigenvalue of the Laplace operator acting
on functions on ∂M (w.r.t. the induced metric from M) satisfies

λ1 ≥ nc2.

Furthermore, the equality holds if and only if Mn+1 is isometric to the Euclidean
(n + 1)-ball of radius 1/c.

Our first corollary is the following.
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1252 A. Mendes

Corollary 2.4 Let M3 be a compact Riemannian 3-manifold with nonempty boundary
∂M. Suppose that Ric ≥ 0, II ≥ 1, and KM (Tp∂M) ≥ 0 for all p ∈ ∂M, where KM

is the sectional curvature of M. If �2 is a properly embedded free boundary minimal
surface of index one in M3, then the length of ∂� satisfies

L(∂�) ≤ 2π(g + r).

Furthermore, if equality holds, M3 is isometric to the Euclidean unit 3-ball B̄3 and
�2 is isometric to the Euclidean unit disk D̄.

Proof Denote by K∂M the Gaussian curvature of ∂M (w.r.t. the induced metric from
M). Also, denote by k1 and k2 the principal curvatures of ∂M inM . ByGauss equation,

K∂M = KM (Tp∂M) + k1k2 ≥ 1.

Now, if L(∂�) = 2π(g+r), byTheorem2.2,�2 is isometric to D̄ and ∂� is a geodesic
of ∂M . In particular, ∂� is a simple (because � is embedded into M) geodesic of ∂M
with L(∂�) = 2π . Then, by Toponogov theorem, ∂M is isometric to the standard
unit 2-sphere S2. Thus, by Xia theorem, M3 is isometric to B̄3. ��

Using the corollary above together with the isoperimetric inequality for minimal
disks in R

3 (see [3] for the general case), we have a sharp upper bound for the area
of a properly embedded free boundary minimal disk of index one in a strictly convex
domain in R3.

Corollary 2.5 Let � be a smooth bounded domain in R
3 whose boundary ∂� is

strictly convex, say II ≥ 1, where II is the second fundamental form of ∂� in R
3. If

�2 is a properly embedded free boundary minimal disk of index one in �, then the
area of � satisfies

A(�) ≤ π.

Moreover, if equality holds, � is the Euclidean unit 3-ball and �2 is the Euclidean
unit disk.

Proof The isoperimetric inequality for minimal disks in R3 says that

4π A(�) ≤ L(∂�)2.

Then, by Theorem 2.2, A(�) ≤ L(∂�)2/(4π) ≤ π . Moreover, if A(�) = π , then
L(∂�) = 2π , which by Corollary 2.4 implies that � is the Euclidean unit 3-ball and
�2 is the Euclidean unit disk. ��

For the general area estimate,wewill introduce a constant depending on the domain.
For this purpose, let � be a smooth bounded domain in R

3 whose boundary ∂� is
strictly convex, say II ≥ 1. Define R(�) by

R(�) = inf
y∈�

sup
x∈∂�

|x − y|.
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Rigidity of Free Boundary Surfaces in Compact 3-Manifolds 1253

It is not difficult to see that

diam(�)

2
≤ R(�) ≤ diam(�).

Moreover, since II ≥ 1, we have K∂� ≥ 1, which by Bonnet–Myers theorem implies
that diam(∂�) ≤ π . Then

R(�) ≤ diam(�) < diam(∂�) ≤ π.

R(�) > 0 is the smallest real number δ > 0 such that � ⊂ B3(x, δ) for some x ∈ �,
where B3(x, δ) is the Euclidean 3-ball of radius δ > 0 and center x .

Our result is the following.

Corollary 2.6 Let � be a smooth bounded domain in R
3 whose boundary ∂� is

strictly convex, say II ≥ 1. If �2 is a properly embedded free boundary minimal
surface of index one in �, then the area of � satisfies

A(�) ≤ π(g + r)R(�). (2.5)

Moreover, if equality holds, � is the Euclidean unit 3-ball and �2 is the Euclidean
unit disk.

Proof Let y0 ∈ � be such that supx∈∂� |x − y0| = R(�). Define f : � → R by
f (x) = 1

2 |x − y0|2. Since � is minimal, we have 
 f = 2. Then

2A(�) =
∫

�


 f dσ =
∫

∂�

∂ f

∂ν
ds

=
∫

∂�

〈x − y0, ν〉ds ≤
∫

∂�

|x − y0|ds
≤ R(�)L(∂�).

Therefore, using L(∂�) ≤ 2π(g + r) into the last inequality above, we get (2.5).
Now, if A(�) = π(g+r)R(�), then L(∂�) = 2π(g+r). The result follows from

Corollary 2.4. ��

3 Free Boundary Stable CMC Surfaces

In this section, we obtain a similar result to Theorem 2.2 for free boundary stable
constant mean curvature (CMC) surfaces and some of its consequences.

As before, let M3 be a compact Riemannian 3-manifold with nonempty boundary
∂M . Assume that Ric ≥ 0 and II > 0. Also, let �2 be a properly embedded compact
surface inM3 with nonempty boundary ∂�.We say that� is stationary if it is a critical
point for the area functional for variations that preserve the property�∩∂M = ∂� and
are volume-preserving (see [17]). Equivalently, � is stationary if it has constant mean
curvature and is free boundary. A free boundary CMC surface � is called stable if its
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1254 A. Mendes

second variation of area is nonnegative for variations as before, which is equivalent to
saying that

I(φ, φ) ≥ 0, (3.1)

for all φ ∈ C∞(�) satisfying
∫

�
φdσ = 0.

Our result is the following.

Theorem 3.1 Let M3 be a compact Riemannian 3-manifold with nonempty boundary
∂M. Suppose that Ric ≥ 0 and II ≥ 1. If �2 is a properly embedded free boundary
stable CMC surface in M3, then the length of ∂� satisfies

L(∂�) ≤ 2π(g + r), (3.2)

where g is the genus of � and r is the number of connected components of ∂�.
Moreover, if equality holds, we have the following:

(i) � (w.r.t. the induced metric from M) is isometric to the Euclidean unit disk D̄;
(ii) ∂� is a geodesic of ∂M;
(iii) � is totally geodesic in M; and
(iv) all sectional curvatures of M vanish on �.

Proof Since � is stable, by (3.1), we have

∫

�

{|∇ f |2 − (Ric(N , N ) + |A|2) f 2}dσ −
∫

∂�

II(N , N ) f 2ds ≥ 0

for all f ∈ C∞(�) satisfying
∫

�
f dσ = 0. Let F = ( f1, f2) : � → D̄ be a proper

conformal branched cover as in the proof of Theorem 2.2. Using Lemma 2.1, we can
assume

∫

�
fi dσ = 0. Then

0 ≤
2

∑

i=1

{∫

�

{|∇ fi |2 − (Ric(N , N ) + |A|2) f 2i }dσ −
∫

∂�

II(N , N ) f 2i ds

}

≤ 2π(g + r) − L(∂�),

which proves (3.2).
If equality holds, working exactly as in the proof of Theorem 2.2, we have the

result. ��
The first consequence of Theorem 3.1 is the following.

Corollary 3.2 Let M3 be a compact Riemannian 3-manifold with nonempty boundary
∂M. Suppose that Ric ≥ 0, II ≥ 1, and KM (Tp∂M) ≥ 0 for all p ∈ ∂M, where KM

is the sectional curvature of M. If �2 is a properly embedded free boundary stable
CMC surface in M3, then the length of ∂� satisfies

L(∂�) ≤ 2π(g + r).
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Furthermore, if equality holds, M3 is isometric to the Euclidean unit 3-ball B̄3 and
�2 is isometric to the Euclidean unit disk D̄.

Below we have a characterization of the Euclidean unit 3-ball by the length of the
boundary of properly embedded free boundary stable CMC disks in it.

Corollary 3.3 The only smooth bounded domain � ⊂ R
3, with boundary ∂� sat-

isfying II ≥ 1, which admits a properly embedded free boundary stable CMC disk
�2 ⊂ � with L(∂�) = 2π is the unit ball.

Corollaries 2.5 and 2.6 are also true if we change the hypothesis “minimal of index
one” by “stable CMC and minimal.”

Remark 3.4 In [17], Ros and Vergasta observed that the only free boundary minimal
surfaces of index one in the ball B̄3 are the totally geodesic disks passing through the
center of the ball. Also, they proved that the only free boundary stable CMC surfaces
in B̄3 are the totally geodesic disks, the spherical caps or surfaces of genus 1 with
embedded boundary having at most two connected components. Recently, Nunes [16]
ruled out the existence of the latter kind of surfaces, i.e., he proved, among other
things, that a stationary stable surface in B̄3 must have genus zero.

Remark 3.5 By [7], under the same assumptions of Theorem 2.2, g = 0, 1 and r =
1, 2, 3 or g = 2, 3 and r = 1 (in fact, it is enough ∂M to be weakly convex). In the
case of smooth bounded domains inR3 with strictly convex boundary, it follows from
the index estimates obtained in [1] and [18] that ind(�) = 1 implies g = 0 (and
r = 1, 2, 3, 4) or g = 1 and r = 1, 2. In the same case, applying the techniques of
[16] for minimal surfaces of index one instead of free boundary stable CMC surfaces,
we can see that g = 0, 1 if ind(�) = 1.
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4 Appendix. Proof of Lemma 2.1

If φ1 = 0, the result is trivial. Then, without loss of generality, we can assume
∫

�
φ1dσ = 1. Let ma ∈ Aut(D̄) be given by

ma(z) = z − a

1 − āz
, z ∈ D̄ ⊂ C,

for each a ∈ D. Define f : D → C by

f (a) =
∫

�\∂�

(ma ◦ F)φ1dσ.

It follows from Lebesgue dominated convergence theorem that f is continuous. Now,
we want to extend f to D̄ continuously. For this purpose, first observe that, if a ∈ S

1,
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z − a

1 − āz
= z − a

a−1(a − z)
= −a,

for all z ∈ D. Then

∫

�\∂�

F − a

1 − āF
φ1dσ = −a

∫

�\∂�

φ1dσ = −a,

where above we have used that F(� \ ∂�) ⊂ D. Second, if an −→ a ∈ S
1 with

an ∈ D \ {0}, we have

man (z) = z − an
1 − ānz

= z − an

a−1
n (an − |an|2z)

−→ z − a

a−1(a − z)
= −a,

for all z ∈ D. Then, defining f (a) = −a for a ∈ S
1, by Lebesgue dominated

convergence theorem, f : D̄ → C is continuous.
Now, observe that | f (a)| ≤ 1 for all a ∈ D̄. Then, f : D̄ → D̄ is a continuous

function satisfying f (a) = −a for a ∈ S
1. Thus, by topological reasons, f is onto.

Therefore, there exists a0 ∈ D such that f (a0) = 0. Take h = ma0 .
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