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Outline of 3 lectures

1 Lecture 1: Background material, statements of the main results.

2 Lecture 2: Proof of extrinsic curvature estimates for H-disks.

3 Lecture 3: Applications:

1 Intrinsic curvature and radius estimates for H-disks.
2 Chord-arc results and 1-sided curvature estimates for H-disks.
3 Curvature estimates for H-annuli.
4 Classification of 0 and 1-connected H-surfaces, H > 0.



Theoretical results on complete embedded H-surfaces

Let M be an H-surface properly embedded in R3, H > 0.

In 1951, Hopf proved that if M is compact and immersed (not
necessarily embedded) of genus 0, then it is a round sphere.

In 1956, Alexandrov proved that if M is compact, then it is a
round sphere.

In 1988, Meeks proved that M cannot have finite topology and 1
end.

In 1989, Korevaar, Kusner and Solomon proved that each annular
end of M is asymptotic to the end of a Delaunay surface. They
also showed that if M has finite topology and 2 ends, then it is a
Delaunay surface.

Recently Meeks and Tinaglia proved that if Σ ⊂ R3 is a complete,
embedded H-surface with finite topology, then Σ is
properly embedded. (Proved for H = 0 by Colding-Minicozzi,
2008)
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Definition (Injectivity Radius)

Given a Riemannian surface M, the injectivity radius function
IM : M→ (0,∞] is defined by: IM(p) = sup{R > 0 | expp : B(R) ⊂
TpM→M is a diffeomorphism.}

The injectivity radius of M is the infimum of IM.

Theorem

A complete surface M # R3 with bounded second fundamental form has
positive injectivity radius.

Theorem (Meeks-Tinaglia, based on previous work of Colding-Minicozzi
& Meeks-Rosenberg)

Complete embedded H-surfaces M ⊂ R3 with finite topology have
positive injectivity radius.

Let M ⊂ R3 be a complete, connected embedded H-surface with
H > 0 and positive injectivity radius. Then M has bounded second
fundamental form and it is properly embedded in R3.
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This theorem by Meeks-Tinaglia and work of Meeks-Rosenberg,
Colding-Minicozzi, Collin, Lopez-Ros when H = 0, and Meeks
and Korevaar-Kusner-Solomon when H 6= 0, completes the
classification of complete, embedded H-surfaces of genus 0 with 0,
1 or 2 ends.

They are planes, spheres, catenoids, unduloids, helicoids.

Remark

One Main Objective of this course is to present the theory behind this
classification for the special case where H > 0.
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Theorem (Intrinsic Curvature Estimates for H-Disks, Meeks-Tinaglia)

Fix ε > 0 and H = 1. ∃ C ≥ π such that for every embedded 1-disk
D ⊂ R3 and every p ∈ D with distD(p, ∂D) ≥ ε,

|AD|(p) ≤ C.

Brief idea/ingredients of the proof.

One-sided curvature estimates for H-disks.

Deep weak-chord arc type theorem reduces the proof to the
failure of an extrinsic curvature estimate:

Curvature estimate fails for D = disk with ∂D ⊂ ∂B(δ) and
~0 ∈ D is a point of large second fundamental form.

Rescaling arguments imply helicoid-type surfaces occur near ~0.

Pair of highly-sheeted multigraphs around ~0 extends to pair of
highly-sheeted multigraphs for a fixed distance proportional to δ,
impossible for H = 1.
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Theorem (One-sided curvature estimate for H-disks, Meeks-Tinaglia)

There exist ε ∈ (0, 12 ) and C ≥ 2
√

2 such that for any R > 0, the
following holds. Let Σ be an H-disk such that

Σ ∩ B(R) ∩ {x3 = 0} = Ø and ∂Σ ∩ B(R) ∩ {x3 > 0} = Ø.

Then:

sup
x∈Σ∩B(εR)∩{x3>0}

|AΣ|(x) ≤ C

R
. (1)

In particular, if Σ ∩ B(εR) ∩ {x3 > 0} 6= Ø, then H ≤ C
R .



Theorem (Chord-Arc Theorem, Meeks-Tinaglia)

There exists a positive constant C such that if Σ ⊂ R3 is an H-disk,

BΣ(~0,CR) ⊂ Σ− ∂Σ and sup
BΣ(~0,r0)

|AΣ| ≥
1

r0
where R > r0, then for

x ∈ BΣ(~0,R),
1

6
distΣ(x ,~0) < |x |+ r0. (2)



Key Preliminary Step.

Theorem (Meeks-Tinaglia)

∃ ε > 0 s.t. for M an 1-disk with ∂M ⊂ (R3 − B(δ)) with δ < ε, then
every component of M ∩ B(δ) has at most 5 boundary components.

Brief Sketch of the Proof.

Arguing by contradiction, ∃ a sequence of 1-disks Σn with
∂Σn ⊂ (R3 − B( 1

n )), s.t. there is a component ∆ of Σn ∩ B( 1
n ) and

∂∆ has at at least 6 boundary curves.

Use the Alexandrov reflection principle as described on the
blackboard to obtain a contradiction when n→∞.



Figure: A 2-valued graph with positive separation.

Definition

In polar coordinates (ρ, θ) on R2 − {0} with ρ > 0 and θ ∈ R, a k-valued
graph on an annulus of inner radius r and outer radius R, is a
single-valued graph of a function u(ρ, θ) defined over

S−k,k
r,R = {(ρ, θ) | r ≤ ρ ≤ R, |θ| ≤ kπ}, (3)

k being a positive integer.

The separation between consecutive sheets is
w(ρ, θ) = u(ρ, θ + 2π)− u(ρ, θ) ∈ R.

The surface
Σg = {(ρ cos θ, ρ sin θ, u(ρ, θ)) | (ρ, θ) ∈ S−k,k

r,R }
is embedded if and only if w > 0 (or w < 0).



Definition

Let γ be a piecewise-smooth 1-cycle in an H-surface M.

The flux of γ is
∫
γ

(Hγ + ξ)× γ̇, where ξ is the unit normal to M
along γ.

Flux is a homological invariant and so vanishes for H-disks.

Theorem (Meeks-Tinaglia)

∃ ε > 0 s.t. for M an 1-disk with ∂M ⊂ (R3 − B(δ)) with δ < ε, then
every component of M ∩ B(δ) has at most 5 boundary components.

Theorem (Curvature Estimates for Planar Domains with Zero Flux)

Given ε ∈ (0, 12 ) and m ∈ N, there exists a constant
K := K(m, ε) > 0 such that the following holds.

Let M ⊂ B(ε) be a compact, connected 1-surface of genus zero
with m boundary components, ~0 ∈M, ∂M ⊂ ∂B(ε) and M has
zero flux. Then |A|M(~0) ≤ K.
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Steps/Outline of the Proof.

Arguing by contradiction, suppose that the theorem fails.

∃ a sequence Mn of 1-surfaces satisfying the hypotheses and
|AMn |(~0) > n.

After replacing Mn with a subsequence composed by a fixed
rotation fixing the origin, when n is sufficiently large we prove:

1. Mn is closely approximated by one or two vertical helicoids on a small
scale around the origin.

2. ∃ a sequence of embedded stable minimal disks E (n) ⊂ B(ε) on the
mean convex side of Mn, where E (n) contains a 10-sheeted
multi-valued graph Eg

n of small gradient that starts near the origin and
extends on a scale proportional to ε.

3. Use the minimal multivalued graph Eg
n to prove that Mn contains

many 3-valued graphs Gn(±) of small gradient that starts near the
origin and extend on a scale proportional to ε; ± refers the sign of the
mean curvature as graphs.

4. Use the 3-valued graphs Gn(±) ⊂M(n) to obtain a contradiction.



Step 1: Mn is closely approximated by one or two vertical helicoids on a
small scale around the origin.

∃ sub-sequence (we still call) Mn, points {pn ∈Mn}n with pn → ~0,

numbers δn > 0 with δn → 0, s.t. M̂n = Mn ∩ B(pn, δn) satisfy:

1. limn→∞ δn · |AMn |(pn) =∞.

2. supp∈M̂n
|AM̂n

(p)| ≤ (1 + 1
n ) · |AMn |(pn).

3. The sequence of translated and rescaled surfaces

Σn =
1√
2
|AMn(pn)| · (M̂n − pn)

converges with multiplicity 1 or 2 to a properly embedded, nonflat,
minimal surface Σ∞ with

|AΣ∞ | ≤ |AΣ∞ |(~0) =
√

2.

4. If the multiplicity 2, then the mean curvature vectors of the two
surfaces limiting to Σ∞ point away from the collapsing region
between them.

5. Smooth loops α in Σ∞ has normal lift αn ⊂Mn such that the lifted
loops converge with multiplicity 1 to α as n→∞; so the genus is 0
and zero flux condition implies Σ∞ is a (vertical) helicoid.
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Picture from Step 1.

By Step 1, Mn contains approximated by a small vertical helicoid
near ~0. Given ε2 ∈ (0, 12 ) and N ∈ N, there exists ω > 0 such that
for any ω1 > ω2 > ω there exist an n0 ∈ N and positive numbers rn,

with rn =
√
2

|AMn |(pn)
, such that for any n > n0 the following

statements hold.

For the clarity of exposition we abuse the notations and we let
M = Mn and r = rn.

1. The disk M ∩ C(ω1r , 2π(N + 2)r) contains the origin and we
denote it by M(ω1r).

2. M(ω1r) ∩ C(ω2r , 2π(N + 2)r) is also a disk and we denote it
by M(ω2r).

3. M(ω1r) ∩ [C(ω1r , 2π(N + 2)r)− Int(C(ω2r , 2π(N + 2)r))],
that is

M(ω1r)− Int(M(ω2r)),

contains two oppositely oriented N-valued graphs u1 and u2
over A(ω1r , ω2r).

4. |∇ui | < ε2, i = 1, 2.



Simplifying Assumptions m = 1 and multiplicity of convergence is 1: The
planar domain Σn is a disk.

In what follows we use the following notation:

For positive numbers, r , h and t,

C(r , h, t) = {(x1 − t)2 + x22 ≤ r2, |x3| ≤ h},

which is the vertical cylinder of radius r , height 2h and centered at
the point (t, 0, 0);

C(r , h) = C(r , h,~0).

For positive numbers r1 > r2 > 0, we let

A(r1, r2) = {r2 <
√
x21 + x22 < r1, x3 = 0},

which is the annulus in the plane {x3 = 0}, centered at the origin
with outer radius r1 and inner radius r2.



Consider the intersection of

[graph(u1) ∪ graph(u2)] ∩ C

(
1

2
, 1,

1

2
+ ω2r

)
;

recall that C( 1
2
, 1, 1

2
+ ω2r) is the truncated vertical cylinder of radius 1

2
,

centered at ( 1
2

+ ω2r , 0, 0) with |x3| ≤ 1.

This intersection consists of a collection of disk components

∆ = {∆1, . . . ,∆2N},

and each ∆i is a graph over

{x3 = 0} ∩ C(ω1r , 1) ∩ C

(
1

2
, 1,

1

2
+ ω2r

)
,

The mean curvature vectors of consecutive components ∆i and ∆i+1

have oppositely signed x3-coordinates.

Let F = {F (1),F (2), . . . ,F (2N)} be the listing of the components of
M ∩ C( 1

2
, 1, 1

2
+ ω2r) that intersect the union of ∆, and indexed so that

∆i ⊂ F (i).

∆i and ∆i+j may be contained in the same component of
M ∩ C( 1

2
, 1, 1

2
+ ω2r) and so, F (i) may equal F (i + j).



Property

Suppose i ∈ {1, 2, . . . , 2N − 1}. If F (i) ∩ ∂M = Ø and the mean
curvature vector of ∆i ⊂ F (i) is upward pointing, then
F (i) = F (i + 1).

Suppose i ∈ {2, 3, . . . , 2N}. If F (i) ∩ ∂M = Ø and the mean
curvature vector of ∆i ⊂ F (i) is downward pointing, then
F (i) = F (i − 1).

Property

There are at most m − 1 indices i , such that F (i) = F (i + 1) and
F (i) ∩ ∂M = Ø.

There exists a simple closed curve G ⊂M like the drawn on the
blackboard that bounds disk DG ⊂M containing a ”large” many
sheeted multigraph G very small gradient over the annulus
A(rω1, rω2).
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Step 2: ∃ a sequence of embedded stable minimal disks E (n) ⊂ B(ε) on
the mean convex side of Mn, where E (n) contains a 10-sheeted
multi-valued graph Eg

n of small gradient that starts near the origin and
extends on a scale proportional to ε.

See the black board for arguments.

Step 3: Use the minimal multi-valued graph Eg
n to prove that Mn

contains many 3-valued graphs Gn(±) of small gradient that starts near
the origin and extend on a scale proportional to ε; ± refers the sign of
the mean curvature as graphs.

See the black board for arguments.
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Theorem (Extrinsic Radius Estimates for H-Disks, Meeks-Tinaglia 2014)

∃ R0 ≥ π such that every embedded 1-disk in R3 has extrinsic radius <
R0.

Proof.

Suppose that the extrinsic radius estimate fails.

Then there exists a sequence of D1,D2, . . . ,Dn, . . . of 1-disks
passing through the origin such that for each n, dR3(~0, ∂Dn) ≥ n+ 1.

Let ∆n ⊂ Dn ∩ B(n) be the component containing ~0.

Since A∆n ≤ C, after replacing by a subsequence, the ∆n converge
with multiplicity 1 to a properly immersed strongly Alexandrov
embedded 1-surface Σ∞ of genus 0 and zero flux.

The Minimal Element Theorem implies that under a sequence of
translations of Σ∞ limits with multiplicity 1 to a Delaunay surface
D.

But a Delaunay surface has non-zero flux.



Theorem (Extrinsic Radius Estimates for H-Disks, Meeks-Tinaglia 2014)

∃ R0 ≥ π such that every embedded 1-disk in R3 has extrinsic radius <
R0.

Proof.

Suppose that the extrinsic radius estimate fails.

Then there exists a sequence of D1,D2, . . . ,Dn, . . . of 1-disks
passing through the origin such that for each n, dR3(~0, ∂Dn) ≥ n+ 1.

Let ∆n ⊂ Dn ∩ B(n) be the component containing ~0.

Since A∆n ≤ C, after replacing by a subsequence, the ∆n converge
with multiplicity 1 to a properly immersed strongly Alexandrov
embedded 1-surface Σ∞ of genus 0 and zero flux.

The Minimal Element Theorem implies that under a sequence of
translations of Σ∞ limits with multiplicity 1 to a Delaunay surface
D.

But a Delaunay surface has non-zero flux.


