Mini-course in Maceio on embedded constant mean curvature surfaces in R³

William H. Meeks III University of Massachusetts at Amherst Based on joint work with Giuseppe Tinaglia.

Some preliminary papers on the lecture material can be found on Tinaglia's web page at Kings College London.

Outline of 3 lectures

- Lecture 1: Background material, statements of the main results.
- 2 Lecture 2: Proof of extrinsic curvature estimates for H-disks.
- 3 Lecture 3: Applications:
 - **1** Intrinsic curvature and radius estimates for H-disks.
 - **2** Chord-arc results and **1**-sided curvature estimates for **H**-disks.
 - **③** Curvature estimates for **H**-annuli.
 - Classification of 0 and 1-connected H-surfaces, H > 0.

Let M be an H-surface properly embedded in \mathbb{R}^3 , $\mathbb{H} > 0$.

• In 1951, **Hopf** proved that if **M** is compact and immersed (not necessarily embedded) of genus **0**, then it is a round sphere.

- In 1951, Hopf proved that if M is compact and immersed (not necessarily embedded) of genus 0, then it is a round sphere.
- In 1956, Alexandrov proved that if M is compact, then it is a round sphere.

- In 1951, **Hopf** proved that if **M** is compact and immersed (not necessarily embedded) of genus **0**, then it is a round sphere.
- In 1956, Alexandrov proved that if M is compact, then it is a round sphere.
- In 1988, Meeks proved that M cannot have finite topology and 1 end.

- In 1951, **Hopf** proved that if **M** is compact and immersed (not necessarily embedded) of genus **0**, then it is a round sphere.
- In 1956, Alexandrov proved that if M is compact, then it is a round sphere.
- In 1988, Meeks proved that M cannot have finite topology and 1 end.
- In 1989, Korevaar, Kusner and Solomon proved that each annular end of M is asymptotic to the end of a Delaunay surface. They also showed that if M has finite topology and 2 ends, then it is a Delaunay surface.

- In 1951, Hopf proved that if M is compact and immersed (not necessarily embedded) of genus 0, then it is a round sphere.
- In 1956, Alexandrov proved that if M is compact, then it is a round sphere.
- In 1988, Meeks proved that M cannot have finite topology and 1 end.
- In 1989, Korevaar, Kusner and Solomon proved that each annular end of M is asymptotic to the end of a Delaunay surface. They also showed that if M has finite topology and 2 ends, then it is a Delaunay surface.
- Recently Meeks and Tinaglia proved that if Σ ⊂ R³ is a complete, embedded H-surface with finite topology, then Σ is properly embedded. (*Proved for* H = 0 by Colding-Minicozzi, 2008)

Definition (Injectivity Radius)

• Given a Riemannian surface M, the injectivity radius function $I_{M}: M \to (0, \infty]$ is defined by: $I_{M}(\mathbf{p}) = \sup\{R > 0 \mid \exp_{\mathbf{p}}: B(R) \subset \mathbf{T}_{\mathbf{p}}M \to M$ is a diffeomorphism.}

• The injectivity radius of ${\bf M}$ is the infimum of ${\bf I}_{{\bf M}}.$

Definition (Injectivity Radius)

- Given a Riemannian surface M, the injectivity radius function $I_{M}: M \to (0, \infty]$ is defined by: $I_{M}(\mathbf{p}) = \sup\{R > 0 \mid \exp_{\mathbf{p}}: B(R) \subset \mathbf{T}_{\mathbf{p}}M \to M$ is a diffeomorphism.}
- The injectivity radius of ${\bf M}$ is the infimum of ${\bf I}_{{\bf M}}.$

Theorem

A complete surface $M \looparrowright R^3$ with bounded second fundamental form has positive injectivity radius.

Definition (Injectivity Radius)

- Given a Riemannian surface M, the injectivity radius function $I_{M}: M \to (0, \infty]$ is defined by: $I_{M}(\mathbf{p}) = \sup\{R > 0 \mid \exp_{\mathbf{p}}: B(R) \subset T_{\mathbf{p}}M \to M$ is a diffeomorphism.}
- The injectivity radius of ${\bf M}$ is the infimum of ${\bf I}_{{\bf M}}.$

Theorem

A complete surface $M \looparrowright R^3$ with bounded second fundamental form has positive injectivity radius.

Theorem (Meeks-Tinaglia, based on previous work of Colding-Minicozzi & Meeks-Rosenberg)

- Complete embedded H-surfaces $M \subset \mathbb{R}^3$ with finite topology have positive injectivity radius.
- Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface with H > 0 and positive injectivity radius. Then M has bounded second fundamental form and it is properly embedded in \mathbb{R}^3 .

- This theorem by Meeks-Tinaglia and work of Meeks-Rosenberg, Colding-Minicozzi, Collin, Lopez-Ros when H = 0, and Meeks and Korevaar-Kusner-Solomon when H ≠ 0, completes the classification of complete, embedded H-surfaces of genus 0 with 0, 1 or 2 ends.
- They are planes, spheres, catenoids, unduloids, helicoids.

- This theorem by Meeks-Tinaglia and work of Meeks-Rosenberg, Colding-Minicozzi, Collin, Lopez-Ros when H = 0, and Meeks and Korevaar-Kusner-Solomon when H ≠ 0, completes the classification of complete, embedded H-surfaces of genus 0 with 0, 1 or 2 ends.
- They are planes, spheres, catenoids, unduloids, helicoids.

Remark

One Main Objective of this course is to present the theory behind this classification for the special case where H > 0.

Fix $\varepsilon > 0$ and $\mathbf{H} = 1$. $\exists \mathbf{C} \ge \pi$ such that for every embedded 1-disk $\mathbf{D} \subset \mathbf{R}^3$ and every $p \in \mathbf{D}$ with $dist_{\mathbf{D}}(p, \partial \mathbf{D}) \ge \varepsilon$,

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}.$

Fix $\varepsilon > 0$ and $\mathbf{H} = 1$. $\exists \mathbf{C} \ge \pi$ such that for every embedded 1-disk $\mathbf{D} \subset \mathbf{R}^3$ and every $p \in \mathbf{D}$ with $dist_{\mathbf{D}}(p, \partial \mathbf{D}) \ge \varepsilon$,

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}.$

Brief idea/ingredients of the proof.

• One-sided curvature estimates for H-disks.

Fix $\varepsilon > 0$ and $\mathbf{H} = 1$. $\exists \mathbf{C} \ge \pi$ such that for every embedded 1-disk $\mathbf{D} \subset \mathbf{R}^3$ and every $p \in \mathbf{D}$ with $dist_{\mathbf{D}}(p, \partial \mathbf{D}) \ge \varepsilon$,

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}.$

Brief idea/ingredients of the proof.

- One-sided curvature estimates for H-disks.
- **Deep weak-chord arc type theorem** reduces the proof to the failure of an <u>extrinsic curvature estimate</u>:

Curvature estimate fails for D = disk with $\partial D \subset \partial \mathbb{B}(\delta)$ and $\vec{0} \in D$ is a point of large second fundamental form.

Fix $\varepsilon > 0$ and $\mathbf{H} = 1$. $\exists \mathbf{C} \ge \pi$ such that for every embedded 1-disk $\mathbf{D} \subset \mathbf{R}^3$ and every $p \in \mathbf{D}$ with $dist_{\mathbf{D}}(p, \partial \mathbf{D}) \ge \varepsilon$,

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}.$

Brief idea/ingredients of the proof.

- One-sided curvature estimates for H-disks.
- **Deep weak-chord arc type theorem** reduces the proof to the failure of an <u>extrinsic curvature estimate</u>:

Curvature estimate fails for D = disk with $\partial D \subset \partial \mathbb{B}(\delta)$ and $\vec{0} \in D$ is a point of large second fundamental form.

• Rescaling arguments imply helicoid-type surfaces occur near 0.

Fix $\varepsilon > 0$ and $\mathbf{H} = 1$. $\exists \mathbf{C} \ge \pi$ such that for every embedded 1-disk $\mathbf{D} \subset \mathbf{R}^3$ and every $p \in \mathbf{D}$ with $dist_{\mathbf{D}}(p, \partial \mathbf{D}) \ge \varepsilon$,

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}.$

Brief idea/ingredients of the proof.

- One-sided curvature estimates for H-disks.
- **Deep weak-chord arc type theorem** reduces the proof to the failure of an <u>extrinsic curvature estimate</u>:

Curvature estimate fails for D = disk with $\partial D \subset \partial \mathbb{B}(\delta)$ and $\vec{0} \in D$ is a point of large second fundamental form.

- Rescaling arguments imply helicoid-type surfaces occur near $\vec{0}$.
- Pair of highly-sheeted multigraphs around $\vec{0}$ extends to pair of highly-sheeted multigraphs for a fixed distance proportional to δ , impossible for $\mathbf{H} = 1$.

Theorem (One-sided curvature estimate for H-disks, Meeks-Tinaglia)

There exist $\varepsilon \in (0, \frac{1}{2})$ and $C \ge 2\sqrt{2}$ such that for any R > 0, the following holds. Let Σ be an **H**-disk such that

 $\Sigma \cap \mathbb{B}(R) \cap \{x_3 = 0\} = \emptyset$ and $\partial \Sigma \cap \mathbb{B}(R) \cap \{x_3 > 0\} = \emptyset$.

Then:

$$\sup_{x\in \mathbf{\Sigma}\cap\mathbb{B}(\varepsilon R)\cap\{x_3>0\}}|\mathbf{A}_{\mathbf{\Sigma}}|(x)\leq \frac{C}{R}.$$
 (1)

In particular, if $\Sigma \cap \mathbb{B}(\varepsilon R) \cap \{x_3 > 0\} \neq \emptyset$, then $H \leq \frac{C}{R}$.

Theorem (Chord-Arc Theorem, Meeks-Tinaglia)

There exists a positive constant *C* such that if $\Sigma \subset \mathbb{R}^3$ is an H-disk, $B_{\Sigma}(\vec{0}, CR) \subset \Sigma - \partial \Sigma$ and $\sup_{\mathbb{B}_{\Sigma}(\vec{0}, r_0)} |\mathbf{A}_{\Sigma}| \ge \frac{1}{r_0}$ where $R > r_0$, then for $x \in B_{\Sigma}(\vec{0}, R)$, $\frac{1}{6} \operatorname{dist}_{\Sigma}(x, \vec{0}) < |x| + r_0$. (2)

Key Preliminary Step.

Theorem (Meeks-Tinaglia)

 $\exists \varepsilon > 0$ s.t. for M an 1-disk with $\partial M \subset (\mathbb{R}^3 - \mathbb{B}(\delta))$ with $\delta < \varepsilon$, then every component of $M \cap \mathbb{B}(\delta)$ has at most 5 boundary components.

Brief Sketch of the Proof.

- Arguing by contradiction, \exists a sequence of 1-disks Σ_n with $\partial \Sigma_n \subset (\mathbb{R}^3 \mathbb{B}(\frac{1}{n}))$, s.t. there is a component Δ of $\Sigma_n \cap \mathbb{B}(\frac{1}{n})$ and $\partial \Delta$ has at at least 6 boundary curves.
- Use the Alexandrov reflection principle as described on the blackboard to obtain a contradiction when $n \rightarrow \infty$.

Figure: A 2-valued graph with positive separation.

Definition

In polar coordinates (ρ, θ) on ℝ² - {0} with ρ > 0 and θ ∈ ℝ, a k-valued graph on an annulus of inner radius r and outer radius R, is a single-valued graph of a function u(ρ, θ) defined over

$$S_{r,R}^{-k,k} = \{(\rho,\theta) \mid r \le \rho \le R, \ |\theta| \le k\pi\},\tag{3}$$

k being a positive integer.

- The separation between consecutive sheets is $w(\rho, \theta) = u(\rho, \theta + 2\pi) u(\rho, \theta) \in \mathbb{R}.$
- The surface

 $\boldsymbol{\Sigma}_{g} = \{ (\rho \cos \theta, \rho \sin \theta, u(\rho, \theta)) \mid (\rho, \theta) \in S_{r,R}^{-k,k} \}$ is embedded if and only if w > 0 (or w < 0).

Definition

- Let γ be a piecewise-smooth 1-cycle in an H-surface M.
- The flux of γ is $\int_{\gamma} (\mathbf{H}\gamma + \xi) \times \dot{\gamma}$, where ξ is the unit normal to M along γ .
- Flux is a homological invariant and so vanishes for H-disks.

Definition

- Let γ be a piecewise-smooth 1-cycle in an H-surface M.
- The flux of γ is $\int_{\gamma} (\mathbf{H}\gamma + \xi) \times \dot{\gamma}$, where ξ is the unit normal to M along γ .
- Flux is a homological invariant and so vanishes for H-disks.

Theorem (Meeks-Tinaglia)

 $\exists \varepsilon > 0 \text{ s.t. for } M \text{ an 1-disk with } \partial M \subset (\mathbb{R}^3 - \mathbb{B}(\delta)) \text{ with } \delta < \varepsilon, \text{ then every component of } M \cap \mathbb{B}(\delta) \text{ has at most 5 boundary components.}$

Definition

- Let γ be a piecewise-smooth 1-cycle in an H-surface M.
- The flux of γ is $\int_{\gamma} (\mathbf{H}\gamma + \xi) \times \dot{\gamma}$, where ξ is the unit normal to M along γ .
- Flux is a homological invariant and so vanishes for H-disks.

Theorem (Meeks-Tinaglia)

 $\exists \varepsilon > 0 \text{ s.t. for } M \text{ an 1-disk with } \partial M \subset (\mathbb{R}^3 - \mathbb{B}(\delta)) \text{ with } \delta < \varepsilon, \text{ then every component of } M \cap \mathbb{B}(\delta) \text{ has at most 5 boundary components.}$

Theorem (Curvature Estimates for Planar Domains with Zero Flux)

- Given ε ∈ (0, ¹/₂) and m ∈ N, there exists a constant
 K := K(m, ε) > 0 such that the following holds.
- Let M ⊂ B(ε) be a compact, connected 1-surface of genus zero with *m* boundary components, 0 ∈ M, ∂M ⊂ ∂B(ε) and M has zero flux. Then |A|_M(0) ≤ K.

Steps/Outline of the Proof.

- Arguing by contradiction, suppose that the theorem fails.
- \exists a sequence M_n of 1-surfaces satisfying the hypotheses and $|A_{M_n}|(\vec{0}) > n$.
- After replacing M_n with a subsequence composed by a fixed rotation fixing the origin, when n is sufficiently large we prove:
- 1. M_n is closely approximated by one or two vertical helicoids on a small scale around the origin.
- 2. \exists a sequence of embedded stable <u>minimal</u> disks $E(n) \subset \mathbb{B}(\varepsilon)$ on the mean convex side of M_n , where E(n) contains a 10-sheeted multi-valued graph $\mathbf{E}_n^{\varepsilon}$ of small gradient that starts near the origin and extends on a scale proportional to ε .
- 3. Use the minimal multivalued graph \mathbf{E}_n^g to prove that \mathbf{M}_n contains many 3-valued graphs $\mathbf{G}_n(\pm)$ of small gradient that starts near the origin and extend on a scale proportional to ε ; \pm refers the sign of the mean curvature as graphs.
- 4. Use the 3-valued graphs $G_n(\pm) \subset M(n)$ to obtain a contradiction.

 \exists sub-sequence (we still call) \mathbf{M}_n , points $\{p_n \in \mathbf{M}_n\}_n$ with $p_n \to \vec{0}$, numbers $\delta_n > 0$ with $\delta_n \to 0$, s.t. $\widehat{\mathbf{M}}_n = \mathbf{M}_n \cap \mathbb{B}(p_n, \delta_n)$ satisfy:

 \exists sub-sequence (we still call) \mathbf{M}_n , points $\{p_n \in \mathbf{M}_n\}_n$ with $p_n \to \vec{0}$, numbers $\delta_n > 0$ with $\delta_n \to 0$, s.t. $\widehat{\mathbf{M}}_n = \mathbf{M}_n \cap \mathbb{B}(p_n, \delta_n)$ satisfy:

1. $\lim_{n\to\infty} \delta_n \cdot |\mathbf{A}_{\mathbf{M}_n}|(p_n) = \infty.$

 \exists sub-sequence (we still call) \mathbf{M}_n , points $\{p_n \in \mathbf{M}_n\}_n$ with $p_n \to \vec{0}$, numbers $\delta_n > 0$ with $\delta_n \to 0$, s.t. $\widehat{\mathbf{M}}_n = \mathbf{M}_n \cap \mathbb{B}(p_n, \delta_n)$ satisfy:

- 1. $\lim_{n\to\infty} \delta_n \cdot |\mathbf{A}_{\mathbf{M}_n}|(p_n) = \infty.$
- 2. $\sup_{p\in\widehat{\mathsf{M}}_n} |\mathsf{A}_{\widehat{\mathsf{M}}_n}(p)| \leq (1+\frac{1}{n}) \cdot |\mathsf{A}_{\mathsf{M}_n}|(p_n).$

 \exists sub-sequence (we still call) \mathbf{M}_n , points $\{p_n \in \mathbf{M}_n\}_n$ with $p_n \to \vec{0}$, numbers $\delta_n > 0$ with $\delta_n \to 0$, s.t. $\widehat{\mathbf{M}}_n = \mathbf{M}_n \cap \mathbb{B}(p_n, \delta_n)$ satisfy:

1.
$$\lim_{n\to\infty} \delta_n \cdot |\mathbf{A}_{\mathbf{M}_n}|(p_n) = \infty.$$

- 2. $\sup_{p\in \widehat{\mathsf{M}}_n} |\mathsf{A}_{\widehat{\mathsf{M}}_n}(p)| \leq (1+\frac{1}{n}) \cdot |\mathsf{A}_{\mathsf{M}_n}|(p_n).$
- 3. The sequence of translated and rescaled surfaces

$$\mathbf{\Sigma}_n = rac{1}{\sqrt{2}} |\mathbf{A}_{\mathsf{M}_n}(p_n)| \cdot (\widehat{\mathsf{M}}_n - p_n)$$

converges with multiplicity 1 or 2 to a properly embedded, nonflat, minimal surface Σ_∞ with

$$|\mathbf{A}_{\boldsymbol{\Sigma}_{\infty}}| \leq |\mathbf{A}_{\boldsymbol{\Sigma}_{\infty}}|(\vec{0}) = \sqrt{2}.$$

 \exists sub-sequence (we still call) \mathbf{M}_n , points $\{p_n \in \mathbf{M}_n\}_n$ with $p_n \to \vec{0}$, numbers $\delta_n > 0$ with $\delta_n \to 0$, s.t. $\widehat{\mathbf{M}}_n = \mathbf{M}_n \cap \mathbb{B}(p_n, \delta_n)$ satisfy:

1.
$$\lim_{n\to\infty} \delta_n \cdot |\mathbf{A}_{\mathbf{M}_n}|(p_n) = \infty.$$

- 2. $\sup_{p\in\widehat{\mathsf{M}}_n} |\mathsf{A}_{\widehat{\mathsf{M}}_n}(p)| \leq (1+\frac{1}{n}) \cdot |\mathsf{A}_{\mathsf{M}_n}|(p_n).$
- 3. The sequence of translated and rescaled surfaces

$$\mathbf{\Sigma}_n = rac{1}{\sqrt{2}} |\mathbf{A}_{\mathsf{M}_n}(p_n)| \cdot (\widehat{\mathsf{M}}_n - p_n)$$

converges with multiplicity 1 or 2 to a properly embedded, nonflat, minimal surface Σ_∞ with

$$|\mathbf{A}_{\mathbf{\Sigma}_{\infty}}| \leq |\mathbf{A}_{\mathbf{\Sigma}_{\infty}}|(\vec{0}) = \sqrt{2}.$$

4. If the multiplicity 2, then the mean curvature vectors of the two surfaces limiting to Σ_{∞} point away from the collapsing region between them.

 \exists sub-sequence (we still call) \mathbf{M}_n , points $\{p_n \in \mathbf{M}_n\}_n$ with $p_n \to \vec{0}$, numbers $\delta_n > 0$ with $\delta_n \to 0$, s.t. $\widehat{\mathbf{M}}_n = \mathbf{M}_n \cap \mathbb{B}(p_n, \delta_n)$ satisfy:

1.
$$\lim_{n\to\infty} \delta_n \cdot |\mathbf{A}_{\mathbf{M}_n}|(p_n) = \infty.$$

- 2. $\sup_{p\in\widehat{\mathsf{M}}_n} |\mathsf{A}_{\widehat{\mathsf{M}}_n}(p)| \leq (1+\frac{1}{n}) \cdot |\mathsf{A}_{\mathsf{M}_n}|(p_n).$
- 3. The sequence of translated and rescaled surfaces

$$\mathbf{\Sigma}_n = rac{1}{\sqrt{2}} |\mathbf{A}_{\mathsf{M}_n}(p_n)| \cdot (\widehat{\mathsf{M}}_n - p_n)$$

converges with multiplicity 1 or 2 to a properly embedded, nonflat, minimal surface Σ_∞ with

$$|\mathbf{A}_{\boldsymbol{\Sigma}_{\infty}}| \leq |\mathbf{A}_{\boldsymbol{\Sigma}_{\infty}}|(\vec{0}) = \sqrt{2}.$$

- 4. If the multiplicity 2, then the mean curvature vectors of the two surfaces limiting to Σ_{∞} point away from the collapsing region between them.
- 5. Smooth loops α in Σ_{∞} has normal lift $\alpha_n \subset M_n$ such that the lifted loops converge with multiplicity 1 to α as $n \to \infty$;

 \exists sub-sequence (we still call) \mathbf{M}_n , points $\{p_n \in \mathbf{M}_n\}_n$ with $p_n \to \vec{0}$, numbers $\delta_n > 0$ with $\delta_n \to 0$, s.t. $\widehat{\mathbf{M}}_n = \mathbf{M}_n \cap \mathbb{B}(p_n, \delta_n)$ satisfy:

1.
$$\lim_{n\to\infty} \delta_n \cdot |\mathbf{A}_{\mathbf{M}_n}|(p_n) = \infty.$$

- 2. $\sup_{p\in\widehat{\mathsf{M}}_n} |\mathsf{A}_{\widehat{\mathsf{M}}_n}(p)| \leq (1+\frac{1}{n}) \cdot |\mathsf{A}_{\mathsf{M}_n}|(p_n).$
- 3. The sequence of translated and rescaled surfaces

$$\mathbf{\Sigma}_n = rac{1}{\sqrt{2}} |\mathbf{A}_{\mathsf{M}_n}(p_n)| \cdot (\widehat{\mathsf{M}}_n - p_n)$$

converges with multiplicity 1 or 2 to a properly embedded, nonflat, minimal surface Σ_∞ with

$$|\mathbf{A}_{\boldsymbol{\Sigma}_{\infty}}| \leq |\mathbf{A}_{\boldsymbol{\Sigma}_{\infty}}|(\vec{0}) = \sqrt{2}.$$

- 4. If the multiplicity 2, then the mean curvature vectors of the two surfaces limiting to Σ_{∞} point away from the collapsing region between them.
- 5. Smooth loops α in Σ_{∞} has normal lift $\alpha_n \subset M_n$ such that the lifted loops converge with multiplicity 1 to α as $n \to \infty$; so the genus is 0 and zero flux condition implies Σ_{∞} is a (vertical) helicoid.

Picture from Step 1.

- By Step 1, \mathbf{M}_n contains approximated by a small vertical helicoid near $\vec{0}$. Given $\varepsilon_2 \in (0, \frac{1}{2})$ and $N \in \mathbb{N}$, there exists $\overline{\omega} > 0$ such that for any $\omega_1 > \omega_2 > \overline{\omega}$ there exist an $n_0 \in \mathbb{N}$ and positive numbers r_n , with $r_n = \frac{\sqrt{2}}{|A_{\mathbf{M}_n}|(p_n)}$, such that for any $n > n_0$ the following statements hold.
- For the clarity of exposition we abuse the notations and we let M = M_n and r = r_n.
 - 1. The disk $\mathbf{M} \cap \mathbf{C}(\omega_1 r, 2\pi(N+2)r)$ contains the origin and we denote it by $\mathbf{M}(\omega_1 r)$.
 - 2. $\mathbf{M}(\omega_1 r) \cap \mathbf{C}(\omega_2 r, 2\pi (N+2)r)$ is also a disk and we denote it by $\mathbf{M}(\omega_2 r)$.
 - 3. $\mathbf{M}(\omega_1 r) \cap [\mathbf{C}(\omega_1 r, 2\pi(N+2)r) Int(\mathbf{C}(\omega_2 r, 2\pi(N+2)r))],$ that is

$$\mathbf{M}(\omega_1 r) - \operatorname{Int}(\mathbf{M}(\omega_2 r)),$$

contains two oppositely oriented *N*-valued graphs u_1 and u_2 over $A(\omega_1 r, \omega_2 r)$.

4.
$$|\nabla u_i| < \varepsilon_2, i = 1, 2.$$

Simplifying Assumptions m = 1 and multiplicity of convergence is 1: The planar domain Σ_n is a disk.

In what follows we use the following notation:

• For positive numbers, r, h and t,

$$\mathbf{C}(r,h,t) = \{(x_1-t)^2 + x_2^2 \le r^2, |x_3| \le h\},\$$

which is the vertical cylinder of radius r, height 2h and centered at the point (t, 0, 0);

$$\mathbf{C}(r,h)=\mathbf{C}(r,h,\vec{0}).$$

• For positive numbers $r_1 > r_2 > 0$, we let

$$A(r_1, r_2) = \{r_2 < \sqrt{x_1^2 + x_2^2} < r_1, x_3 = 0\},\$$

which is the annulus in the plane $\{x_3 = 0\}$, centered at the origin with outer radius r_1 and inner radius r_2 .

• Consider the intersection of

$$[\operatorname{graph}(u_1)\cup\operatorname{graph}(u_2)]\cap \mathsf{C}\left(rac{1}{2},1,rac{1}{2}+\omega_2 r
ight);$$

recall that $C(\frac{1}{2}, 1, \frac{1}{2} + \omega_2 r)$ is the truncated vertical cylinder of radius $\frac{1}{2}$, centered at $(\frac{1}{2} + \omega_2 r, 0, 0)$ with $|x_3| \le 1$.

• This intersection consists of a collection of disk components

$$\mathbf{\Delta} = \{\mathbf{\Delta}_1, \ldots, \mathbf{\Delta}_{2N}\},\$$

and each Δ_i is a graph over

$$\{x_3=0\}\cap\mathsf{C}(\omega_1r,1)\cap\mathsf{C}\left(rac{1}{2},1,rac{1}{2}+\omega_2r
ight),$$

- The mean curvature vectors of consecutive components Δ_i and Δ_{i+1} have oppositely signed x₃-coordinates.
- Let $\mathcal{F} = \{F(1), F(2), \dots, F(2N)\}$ be the listing of the components of $M \cap C(\frac{1}{2}, 1, \frac{1}{2} + \omega_2 r)$ that intersect the union of Δ , and indexed so that $\Delta_i \subset F(i)$.
- Δ_i and Δ_{i+j} may be contained in the same component of $M \cap C(\frac{1}{2}, 1, \frac{1}{2} + \omega_2 r)$ and so, F(i) may equal F(i+j).

Property

Suppose i ∈ {1,2,...,2N - 1}. If F(i) ∩ ∂M = Ø and the mean curvature vector of Δ_i ⊂ F(i) is upward pointing, then F(i) = F(i + 1).

Property

- Suppose i ∈ {1,2,..., 2N − 1}. If F(i) ∩ ∂M = Ø and the mean curvature vector of Δ_i ⊂ F(i) is upward pointing, then F(i) = F(i + 1).
- Suppose i ∈ {2,3,...,2N}. If F(i) ∩ ∂M = Ø and the mean curvature vector of Δ_i ⊂ F(i) is downward pointing, then F(i) = F(i − 1).

Property

- Suppose i ∈ {1,2,..., 2N − 1}. If F(i) ∩ ∂M = Ø and the mean curvature vector of Δ_i ⊂ F(i) is upward pointing, then F(i) = F(i + 1).
- Suppose i ∈ {2,3,...,2N}. If F(i) ∩ ∂M = Ø and the mean curvature vector of Δ_i ⊂ F(i) is downward pointing, then F(i) = F(i-1).

Property

- There are at most m-1 indices *i*, such that F(i) = F(i+1) and $F(i) \cap \partial \mathbf{M} = \emptyset$.
- There exists a simple closed curve $\mathbf{G} \subset \mathbf{M}$ like the drawn on the blackboard that bounds disk $D_{\mathbf{G}} \subset \mathbf{M}$ containing a "large" many sheeted multigraph \mathbf{G} very small gradient over the annulus $A(r\omega_1, r\omega_2)$.

Step 2: \exists a sequence of embedded stable <u>minimal</u> disks $E(n) \subset \mathbb{B}(\varepsilon)$ on the mean convex side of \mathbf{M}_n , where E(n) contains a 10-sheeted multi-valued graph $\mathbf{E}_n^{\varepsilon}$ of small gradient that starts near the origin and extends on a scale proportional to ε .

See the black board for arguments.

Step 2: \exists a sequence of embedded stable <u>minimal</u> disks $E(n) \subset \mathbb{B}(\varepsilon)$ on the mean convex side of \mathbf{M}_n , where E(n) contains a 10-sheeted multi-valued graph \mathbf{E}_n^{g} of small gradient that starts near the origin and extends on a scale proportional to ε .

See the black board for arguments.

Step 3: Use the minimal multi-valued graph \mathbf{E}_n^g to prove that \mathbf{M}_n contains many 3-valued graphs $\mathbf{G}_n(\pm)$ of small gradient that starts near the origin and extend on a scale proportional to ε ; \pm refers the sign of the mean curvature as graphs.

See the black board for arguments.

Theorem (Extrinsic Radius Estimates for H-Disks, Meeks-Tinaglia 2014)

 $\exists~\mathsf{R}_0 \geq \pi$ such that every embedded 1-disk in R^3 has extrinsic radius $<\mathsf{R}_0.$

Theorem (Extrinsic Radius Estimates for **H**-Disks, Meeks-Tinaglia 2014)

 $\exists~ {\bf R_0} \geq \pi$ such that every embedded 1-disk in ${\bf R^3}$ has extrinsic radius $< {\bf R_0}.$

Proof.

- Suppose that the extrinsic radius estimate fails.
- Then there exists a sequence of D₁, D₂,..., D_n,... of 1-disks passing through the origin such that for each n, d_{ℝ³}(0, ∂D_n) ≥ n+1.
- Let $\Delta_n \subset \mathbb{D}_n \cap \mathbb{B}(n)$ be the component containing $\vec{0}$.
- Since $A_{\Delta_n} \leq C$, after replacing by a subsequence, the Δ_n converge with multiplicity 1 to a properly immersed strongly Alexandrov embedded 1-surface Σ_{∞} of genus 0 and zero flux.
- The Minimal Element Theorem implies that under a sequence of translations of Σ_∞ limits with multiplicity 1 to a Delaunay surface D.
- But a Delaunay surface has non-zero flux.