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Outline of 3 lectures

1 Lecture 1: Background material, statements of the main results.

2 Lecture 2: Proof of extrinsic curvature estimates for H-disks.

3 Lecture 3: Applications:

1 Intrinsic curvature and radius estimates for H-disks.
2 Chord-arc results and 1-sided curvature estimates for H-disks.
3 Curvature estimates for H-annuli.
4 Classification of 0 and 1-connected H-surfaces, H > 0.



Theorem (Intrinsic Curvature Estimates for 1-Disks, Meeks-Tinaglia)

Fix ε > 0 and H = 1. ∃ C = C(1, ε) ≥ π such that for every embedded
1-disk D ⊂ R3 and every p ∈ D with distD(p, ∂D) ≥ ε,

|AD|(p) ≤ C.

Brief idea/ingredients of the proof.

One-sided curvature estimates for H-disks.

Deep weak-chord arc type theorem reduces the proof to the
failure of an extrinsic curvature estimate:

Curvature estimate fails for D = disk with ∂D ⊂ ∂B(δ) and
~0 ∈ D is a point of large second fundamental form.

Rescaling arguments imply helicoid-type surfaces occur near ~0.

Pair of highly-sheeted multigraphs around ~0 extends to pair of
highly-sheeted multigraphs for a fixed distance proportional to δ,
impossible for H = 1.



Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia 2013)

∃ R0 ≥ π such that every embedded H-disk in R3 has radius <
R0

H .

Sketch of the proof.

Rescale any surfaces in the proof so that H = 1.

Arguing by contradiction, suppose that there exists a sequence Dn

of 1-disks and points pn ∈ Dn with dDn(pn, ∂Dn) > n.

Subsequence of Dn − pn converges to a bounded curvature, genus-0
properly ”embedded” H-surface M ⊂ R3 with H = 1.

By the CMC Dynamics Theorem (Meeks-Tinaglia), there exists
a divergent sequence of points qk ∈M, such that M− qk converges
to a surface containing a Delaunay surface.

A Delaunay surface has nonzero CMC flux (invariant on H1(M))
=⇒ Dn has nonzero CMC flux for n large.

But the CMC flux of Dn is 0, which is a contradiction!

Alternate proof that a Delaunay surface cannot occur is by way of
the Alexandrov reflection principle (argument on the blackboard).
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Application of the Radius Estimate to get the Curvature Estimate!

Theorem (Intrinsic Curvature Estimates for H-Disks, Meeks-Tinaglia)

Let C(1, δ) be the curvature estimate for embedded 1-disks at points of
distance ≥ δ from their boundaries and let R0 be their radius estimate.
Fix ε,H > 0. Then ∀ embedded H-disks D ⊂ R3 with H ≥ H and
∀p ∈ D with distD(p, ∂D) ≥ ε,

|AD|(p) ≤ C(1, εH)
R0

ε
.

Proof.

Fix ε,H > 0.

Consider an H-disk D satisfying the hypotheses of the theorem and
with the radius at least ε.

Rescale the D by H to obtain the new surfaces H ·D with mean
curvature H = 1; note the radius of H ·D is at least H · ε.

By radius estimates for 1-disks, H ∈ [H, R0

ε
].

Then C(H, ε) = C(1, εH)
R0

ε
works by scaling.
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Theorem (One-sided curvature estimate for H-disks, Meeks, Tinaglia)

There exist ε ∈ (0, 1
2
) and C > 0 such that for any R > 0, the following holds.

Let Σ be an H-disk such that
Σ ∩ B(R) ∩ {x3 = 0} = Ø and ∂Σ ∩ B(R) ∩ {x3 > 0} = Ø.

Then: sup
x∈Σ∩B(εR)∩{x3>0}

|AΣ|(x) ≤ C

R
. (1)

In particular, if Σ ∩ B(εR) ∩ {x3 > 0} 6= Ø, then H ≤ C
R

.

Sketch of the Proof.

After scaling, assume R = 1.

It suffices to prove that for some ε > 0 the tangent planes to Σ ∩ B(ε)
are not vertical.

Suppose ∃ a sequence of E(n) of Hn-disks satisfying the conditions of Σ
with points qn with vertical tangent planes and qn → ~0.

By extrinsic curvature estimates for H-disks with H > 0, Hn → 0.

BE(n)(qn, 2x3(qn)) cannot be a graph of gradient less than or equal to 1
over its orthogonal projection to TqnE(n).



Continuation of Proof.

Let r(n) ∈ (0, 2x3(qn)) be the largest number such that BE(n)(qn, r(n)) is
a graph of gradient at most 1 over its projection to TqnE(n); by the
previous discussion, limn→∞ r(n) = 0.

Next show that a sub-sequence of translated and scaled surfaces

Σ(n) =
1

r(n)
(E(n)− qn).

converges to a vertical helicoid; this proof is technical.

The proof breaks up into 2 cases:

Case A (easy case): the sequence of surfaces converges Cα

to a minimal lamination R3.
Case B (hard case); there exist points pn ∈ E (n) with
|AE(n)|(pn)→∞, pn → p, and large 3-valued graphs around
pn that converge to a plane in a non-empty lamination limit L
of R3 − χ. Then apply some deep results concerning minimal
laminations with singularities (work of Meeks-Perez-Ros) to
show that Case B does not occur.

See blackboard for arguments to obtain a contradiction.
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Moduli space of genus-0 minimal examples - Meeks, Pérez & Ros



Riemann minimal examples near helicoid limits

x

By appropriately scaling, the Riemann examples Rt converge as
t →∞ to a foliation F of R3 by horizontal planes.

The set of non-smooth convergence S(F) to F consists of 2
vertical lines S1,S2 perpendicular to the planes in F .



Theorem (Chord-Arc Theorem, Meeks-Tinaglia)

There exists a positive constant C such that if Σ ⊂ R3 is an H-disk,

BΣ(~0,CR) ⊂ Σ− ∂Σ and sup
BΣ(~0,r0)

|AΣ| ≥
1

r0
where R > r0, then for

x ∈ BΣ(~0,R),
1

6
distΣ(x ,~0) < |x |+ r0. (2)

Proof.

Clever application of Limit Lamination Theorem for H-planar domains
with positive injectivity radius function ≥ δ > 0 away their boundaries,
which generalizes the main theorem by Colding-Minicozzi for minimal
planar domains in the final paper #5 in their Annals series.

Given Hn-planar domains Mn, ∂Mn →∞, |AMn |(~0) ≥ ε > 0, then a
subsequence converges to planes, catenoids, helicoids, Riemann minimal
examples, to a foliation F of R3 by parallel planes with singular set S(F)
of convergence consisting of one or two lines orthogonal to F or to a
properly ”embedded” genus-0 (H > 0)-planar domain.

If InjMn
(~0) ≤ 1, then ∃ η > 0 depending on the limit and 1-cycles αn on

Mn with flux vector of length F ∈ [η, 2η].



Definition (Scalar flux of an H-annulus)

For an H-annulus E with generator [α] of H1(E), the scalar flux of E,
denoted by F (E), is the length of the flux vector of α.



Proposition (Curvature Estimates for H-annuli)

Given ρ > 0 and δ ∈ (0, 1) there exists a positive constant I0 := I(ρ, δ)

(or I0 := I(δ)) such that if E is a compact 1-annulus with flux F (E) ≥ ρ
(or F (E) = 0), then

inf
{p∈E | dE(p,∂E)≥δ}

IE(p) ≥ I0,

where IE : E→ [0,∞) is the injectivity radius function of E.

Proof.

Suppose ∃ a sequence E(n) of 1-annuli with F (E(n)) ≥ ρ > 0 (or
F (E(n)) = 0), with In : E(n)→ [0,∞) and points p(n) in

{q ∈ E(n) | dE(n)(q, ∂E(n)) ≥ δ} with In(p(n)) ≤ 1

n
.

For each p(n) consider a point q(n) ∈ BE(n)(p(n), δ) where the following
function obtains its maximum value:

f (x) =
dE(n)(x , ∂BE(n)(p(n), δ))

In(x)
.

Then ∃ subdomains Mn ⊂
1

In(pn)
(E(n)− pn) satisfying the hypotheses of

the Limit Lamination Theorem for H-planar domains and IMn (~0) = 1.

But F (Mn) 6∈ [η, 2η] for any η > 0, which gives a contradiction.
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Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia)

For δ, ε > 0, ∃ C ≥ 1 such that for any H ≥ ε and any complete Riemannian
3-manifold N with absolute sectional curvature at most 1, the following hold:

An embedded H-surface M with IM ≥ δ satisfies

|AM| ≤ C.

If N is locally homogeneous and D ⊂ N is an embedded H-disk, then for
p ∈ D with distD(p, ∂D) ≥ ε,

|AD|(p) ≤ C.

Conjecture (Meeks-Tinaglia)

For H > 0, a complete embedded H-surface M of finite topology in a complete
locally homogeneous three-manifold X has bounded second fundamental form.
(Already proved true for many homogeneous geometries including H3.)

Conjecture (Meeks-Tinaglia)

Suppose that X is a non-compact simply connected homogeneous 3-manifold
with Cheeger constant Ch(X). Given ε > 0, there exists radius estimates R(ε)
for embedded H-disks whenever H ≥ 1

2
Ch(X) + ε.



Conjecture (Embedded Calabi-Yau Problem for finite genus H-surfaces,
Meeks-Perez-Ros-Tinaglia)

Complete embedded H finite genus surfaces M ⊂ R3 are properly
embedded and when H > 0, then such an M has cubical volume growth.

Conjecture (Meeks-Tinaglia)

Suppose that X is a homology 3-manifold with a Riemannian metric.

Given n0 ∈ N and positive numbers a < b, there exists a constant
Aa,b such that every compact embedded genus-n0 H-surface
M ⊂ X with H ∈ [a, b] satisfies:

Area(M) ≤ Aa,b.

Furthermore there is a natural compactification of the moduli space
of examples with fixed H > 0 and genus at most n0.


