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Outline of 3 lectures

1 Lecture 1: Background material, statements of the main results.

2 Lecture 2: Proof of extrinsic curvature estimates for H-disks.

3 Lecture 3: Applications:

1 Intrinsic curvature and radius estimates for H-disks.
2 Chord-arc results and 1-sided curvature estimates for H-disks.
3 Curvature estimates for H-annuli.
4 Classification of 0 and 1-connected H-surfaces, H > 0.



Part 1: Background material on topology and geometry of surfaces.

Definition

An continuous map f : X→ Y between topological spaces is
proper, if for each compact set ∆ ⊂ Y, f−1(∆) is compact in X.

An embedded surface M ⊂ R3 is proper if its inclusion map is
proper.

Remark

A smooth embedded noncompact surface M ⊂ R3 that is not proper
must have accumulation points, i.e., ∃ a sequence of points pn ∈M such
that limn→∞ pn = p ∈ R3, but this sequence fails to converge in the
intrinsic Riemannian metric space structure on M.
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Example (Non-proper curves in R2)

Below is a picture of the union L of 2 infinite non-proper green and red
spirals in R2 with the blue circle S1 as its accumulation or limit set.

Example (Non-proper embedded surfaces in R3)

The cross product (L × R) ⊂ R2 × R = R3 corresponds to 2 non-proper
embedded topological planes that spiral into the cylinder (S1 × R) ⊂ R3.



Example (Non-proper curves in R2)

Below is a picture of the union L of 2 infinite non-proper green and red
spirals in R2 with the blue circle S1 as its accumulation or limit set.

Example (Non-proper embedded surfaces in R3)

The cross product (L × R) ⊂ R2 × R = R3 corresponds to 2 non-proper
embedded topological planes that spiral into the cylinder (S1 × R) ⊂ R3.



Theorem (Classification of compact surfaces in R3)

An embedded compact surface M in R3 is topologically equivalent to a
sphere S with g-handles attached. The integer g = genus(M) = max #
of pairwise disjoint simple closed curves which do not separate M.



Definition

The genus g of a surface M is the maximum number of pairwise
disjoint simple closed curves which do not separate the surface; note
that if M is a sphere with g-handles attached, then it has genus g.

A surface M has finite topology if is topologically equivalent to a
compact surface with a finite subset of points E = {p1, p2, . . . , pn}
removed; E is called the set of ends of M.

A surface M ⊂ R3 is a planar domain if it is topologically
equivalent to a connected open set of the plane R2.

An embedded surface M ⊂ R3 is complete if with respect to its
Riemannian distance function, it is a complete metric space.

Remark (Properness versus Completeness)

Every properly immersed surface M # R3 is complete, since metric

spaces where every closed ball BM(p, 1) ⊂M of radius 1 is compact are
always complete.
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Theorem (Classification of noncompact genus g = 0 surfaces)

View the sphere S2 as R2 ∪ {∞}.

A connected noncompact surface ME of genus = 0 can be
parameterized by S2 − E, where E ⊂ S1 ⊂ S2 is a totally
disconnected compact set called the space of ends of ME. Hence:

Noncompact genus 0 surfaces are planar domains.

Two planar domains ME(1), ME(2) are homeomorphic ⇔ their
spaces of ends E(1), E(2) are homeomorphic.



A proper g = 0 surface ME with E = a Cantor set.



Introduction to the theory of CMC surfaces.

Let M be an oriented surface in R3, let ξ be the unit vector field normal
to M:

Ap = −dξ : TpM→ Tξ(p)S
2 ' TpM

is the shape operator of M. Ap is symmetric linear transformation.



Introduction to the theory of CMC surfaces.

Definition

The eigenvalues k1, k2 of Ap are the principal curvatures of M at
p.

K = det(A) = k1k2 is the Gauss curvature function.

H = 1
2 tr(A) = k1+k2

2 is the mean curvature function.

|A| =
√
k2
1 + k2

2 is the norm of the shape operator.

Gauss equation

4H2 = |A|2 + 2K (K = Gaussian curvature)

In particular:

1 When H(p) = 0, then K(p) ≤ 0.

2 When H(p) = 1, then K(p) = 2− 1
2 |A|(p), and so estimates for |A|

give estimates on the Gaussian curvature when M has constant
mean curvature 1.
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Part 2: Introduction to the theory of H-surfaces.

Definition

An H-surface M is a minimal surface ⇐⇒ H ≡ 0 ⇐⇒ M is a critical
point for the area functional under compactly supported variations.

Catenoid

Helicoid



Introduction to the theory of H-surfaces.

Definition

M is a H-surface ⇐⇒ M is a critical point for the area functional
under compactly supported variations preserving the volume.

Sphere Cylinder
Delaunay surfaces



H-surfaces in nature.

Soap films are minimal
surfaces.

Soap bubbles are nonzero
H-surfaces.



In 1845, Delaunay discovered and classified the surfaces of
revolution with constant mean curvature H = 1.

The Sphere S of radius 1 and the Cylinder C of radius 1
2 were

already known.

He wrote down a 1-parameter family Dt , called unduloids or
Delaunay surfaces, where

lim
t→0
Dt = S lim

t→∞
Dt = C.
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A different Delaunay surface and an H-surface called a CMC
Trinoid or just Trinoid.

Delaunay surfaces are topologically planar domains with

two annular ends (Topology: annulus = S1 × [0,∞)).

A Trinoid is topologically a planar domain with three ends, each end
is topologically an annulus, asymptotic to the end of a cylinder or
to the end of some Delaunay surface.
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2 Trinoids each with 1 cylindrical and 2 Delaunay-type ends.

n-noids with the middle one having 1 cylindrical-type end.



Moduli space of genus-0 minimal examples - Meeks, Pérez & Ros



Definition (Smyth and Tinaglia)

Let γ be a piecewise-smooth 1-cycle in an H-surface M.

The flux of γ is
∫
γ

(Hγ + ξ)× γ̇, where ξ is the unit normal to M
along γ.

Flux is a homological invariant and so vanishes for H-disks.

Remark (Application of flux)

If Mn ⊂ R3 is a sequence of Hn-disks that converge smoothly to a
non-flat properly embedded minimal surface M∞, then M∞ is a helicoid!

Proof.

By curve liftings, the limit surface surface must have genus 0.

By the classification of properly embedded minimal planar domains,
M∞ is a helicoid, a catenoid or a Riemann minimal example.

The fluxes of the Mn are 0, so the flux of M∞ is 0.

But flux of circles on catenoids or Riemann examples 6= 0.
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Motivating question for the Main Results.

Do there exist complete, embedded M in R3 having constant mean

curvature H 6= 0 which are topologically the plane R2 ?

Answer is NO!!

More generally, the work of Meeks, Meeks-Rosenberg,
Colding-Minicozzi, Collin, Lopez-Ros, Korevaar, Kusner,
Solomon, the next theorem by Meeks-Tinaglia completes the
classification of complete, embedded H-surfaces with genus 0 and
0, 1 or 2 ends.
They are:
Planes, spheres, catenoids, unduloids, helicoids.
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Part 3: Summary of the Main Results

Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia 2014)

∃ R0 ≥ π such that every embedded 1-disk in R3 has radius < R0.

Corollary (Meeks-Tinaglia 2014)

A complete simply connected H-surface embedded in R3 with H > 0 is a
round sphere.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2014)

Fix ε > 0 and H = 1. ∃ C ≥ 1 such that for every embedded 1-disk
D ⊂ R3 and every p ∈ D with distD(p, ∂D) ≥ ε,

|AD|(p) ≤ C.
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Theorem (One-sided curvature estimate for H-disks, Meeks-Tinaglia)

There exist ε ∈ (0, 12 ) and C ≥ 2
√

2 such that for any R > 0, the
following holds. Let Σ be an H-disk such that

Σ ∩ B(R) ∩ {x3 = 0} = Ø and ∂Σ ∩ B(R) ∩ {x3 > 0} = Ø.

Then:

sup
x∈Σ∩B(εR)∩{x3>0}

|AΣ|(x) ≤ C

R
. (1)

In particular, if Σ ∩ B(εR) ∩ {x3 > 0} 6= Ø, then H ≤ C
R .



Figure: The one-sided curvature estimate.

Theorem (One-side Curvature Estimate, Colding-Minicozzi)

There exists an ε > 0 such that the following holds.

Given r > 0 and an embedded minimal disk Σ ⊂ B(2r) ∩ {x3 > 0}
with ∂Σ ⊂ ∂B(2r), then for any component Σ′ of Σ ∩ B(r) which
intersects B(εr),

r2 sup
Σ′
|KΣ| ≤ 1. (2)



Theorem (Chord-Arc Theorem, Meeks-Tinaglia)

There exists a positive constant C such that if Σ ⊂ R3 is an H-disk,

BΣ(~0,CR) ⊂ Σ− ∂Σ and sup
BΣ(~0,r0)

|AΣ| ≥
1

r0
where R > r0, then for

x ∈ BΣ(~0,R),
1

6
distΣ(x ,~0) < |x |+ r0. (3)

This theorem generalizes a similar result by Colding-Minicozzi for
H = 0.

The above theorem implies that a complete simply connected
H-surface embedded in R3 is proper!!



Theoretical results on complete embedded H-surfaces

Let M be an H-surface properly embedded in R3, H > 0.

In 1951, Hopf proved that if M is compact and immersed (not
necessarily embedded) of genus 0, then it is a round sphere.

In 1956, Alexandrov proved that if M is compact, then it is a
round sphere.

In 1988, Meeks proved that M cannot have finite topology and 1
end.

In 1989, Korevaar, Kusner and Solomon proved that each annular
end of M is asymptotic to the end of a Delaunay surface. They
also showed that if M has finite topology and 2 ends, then it is a
Delaunay surface.

Recently Meeks and Tinaglia proved that if Σ ⊂ R3 is a complete,
embedded H-surface with finite topology, then Σ is
properly embedded. (Proved for H = 0 by Colding-Minicozzi,
2008)
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Definition (Injectivity Radius)

Given a Riemannian surface M, the injectivity radius function
IM : M→ (0,∞] is defined by: IM(p) = sup{R > 0 | expp : B(R) ⊂
TpM→M is a diffeomorphism.}

The injectivity radius of M is the infimum of IM.

Theorem

A complete surface M # R3 with bounded second fundamental form has
positive injectivity radius.

Theorem (Meeks-Tinaglia, based on previous work of Colding-Minicozzi
& Meeks-Rosenberg)

Complete embedded H-surfaces M ⊂ R3 with finite topology have
positive injectivity radius.

Let M ⊂ R3 be a complete, connected embedded H-surface with
H > 0 and positive injectivity radius. Then M has bounded second
fundamental form and it is properly embedded in R3.
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This theorem by Meeks-Tinaglia and work of Meeks-Rosenberg,
Colding-Minicozzi, Collin, Lopez-Ros when H = 0, and Meeks
and Korevaar-Kusner-Solomon when H 6= 0, completes the
classification of complete, embedded H-surfaces of genus 0 with 0,
1 or 2 ends.

They are planes, spheres, catenoids, unduloids, helicoids.

Remark

One Main Objective of this course is to present the theory behind this
classification for the special case where H > 0.
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